“ADAPTABILIDAD DE TRES CULTIVARES DE TARWI (*Lupinus mutabilis* Sweet) CON DIFERENTES ENMIENDAS ORGÁNICAS BAJO CONDICIONES DE ZONA QUECHUA (SABANDÍA – AREQUIPA).”

Tesis presentada por el Bachiller

MARIA DEL ROSARIO PINTO RODRIGUEZ

para optar el título profesional de

INGENIERA AGRÓNOMA

AREQUIPA-PERÚ

2019
“ADAPTABILIDAD DE TRES CULTIVARES DE TARWI (*Lupinus mutabilis* Sweet) CON DIFERENTES ENMIENDAS ORGÁNICAS BAJO CONDICIONES DE ZONA QUECHUA (SABANDÍA – AREQUIPA).”
DEDICATORIA

A Dios y bendito Jesús Nazareno, quienes siempre están a mi lado, para guiar me por el buen camino y enseñarme el propósito de la vida y ofrecerme los medios necesarios para continuar con mi formación profesional.

A mi querido hijo, Diego Enmanuel Chávez Pinto, por su comprensión y cariño, por ser mi motivación y fortaleza para lograr mis objetivos.
AGRADECIMIENTO

A la facultad de Agronomía de la Universidad Nacional de San Agustín de Arequipa, por darme la oportunidad de prepararme profesionalmente, a los docentes quienes me brindaron sus conocimientos y experiencias, que fortalecieron mi desarrollo profesional.

Al Ing. René Quispe Castro por su amistad, dedicación, enseñanzas y acertadas sugerencias que orientaron al mejor desarrollo de la presente investigación.

A mis padres Vicente y María por su confianza, apoyo moral y espiritual, me dieron la fuerza para mi realización personal y profesional.

A mis hermanas, por su apoyo moral en este largo camino, por su aliento y consejos.

A mis amigos, quienes me brindaron su confianza, constante apoyo y cariño.
ÍNDICE

DEDICATORIA .. iii
AGRADECIMIENTO .. iv
RESUMEN .. xix
ABSTRACT ... xx

CAPÍTULO I

INTRODUCCIÓN ... 1

CAPÍTULO II

REVISIÓN BIBLIOGRÁFICA

2.1. El Tarwi .. 4
2.2. Origen .. 4
2.3. Distribución geográfica del tarwi en el Perú .. 5
2.4. Importancia del tarwi ... 6
 2.4.1. Valor nutritivo del grano .. 6
 2.4.2. Uso alimenticio .. 7
 2.4.3. Valor agronómico ... 7
 2.4.4. Uso medicinal ... 8
 2.4.5. Alcaloides .. 8
 2.4.6. Procesamiento: Desamargado de los granos de tarwi .. 8
 2.4.7. Producción de tarwi en región Puno ... 9
 2.4.8. Perspectivas de Comercialización del Grano Seco de Tarwi 11
2.5. Botánica del tarwi .. 12
 2.5.1. Clasificación taxonómica .. 12
 2.5.2. Características morfológicas ... 12
2.6. Fases de desarrollo ... 14
2.6.1. Fenología del cultivo de tarwi ... 15
2.7. Requerimientos climáticos y edáficos. ... 15
2.8. Aspectos agronómicos.. 16
2.9. Cultivares ... 18
2.10. Plagas y enfermedades .. 22
2.11. Los Abonos Orgánicos.. 23
 2.11.1. Guano de Islas. ... 23
 2.11.2. El Bocashi ... 25
 2.11.3. Humus de Lombriz. .. 27
2.12. Los biofermentos .. 29
2.13. Fish mares (Agrocampo Organic’s). .. 29
2.14. Antecedentes... 30

CAPÍTULO III
MATERIALES Y MÉTODOS

3.1. Periodo de ejecución.. 33
3.2. Localización del campo experimental .. 33
3.3. Histórico del campo .. 33
3.4. Condiciones climáticas .. 33
3.5. Registros edáficos .. 35
3.6. Materiales .. 36
 3.6.1. Semilla .. 36
 3.6.2. Abonos orgánicos: .. 36
 3.6.3. Equipo y material de campo: .. 38
 3.6.4. Material de gabinete: .. 38
3.7. Métodos: ... 39
 3.7.1. Tratamientos evaluados. ... 39
 3.7.2. Diseño experimental y prueba estadística .. 39
3.7.3. Dimensiones del área experimental. ... 40
3.7.4. Croquis del área experimental. ... 41

3.8. Manejo Agronómico del Cultivo de Tarwi. .. 42
3.8.1. Preparación del terreno. ... 42
3.8.2. Incorporación de abono de fondo. .. 42
3.8.3. Siembra. .. 42
3.8.4. Aplicación de las enmiendas orgánicas: Bocashi, Humus de Lombriz y Guano de Isla. .. 43
3.8.5. Aplicación de fertilización foliar ... 44
3.8.6. Desherbo y aporque .. 44
3.8.7. Control de plagas y enfermedades .. 44
3.8.8. Aplicación de Riegos .. 45
3.8.9. Cosecha .. 45

3.9. Evaluaciones. ... 46
3.9.1. Emergencia: ... 46
3.9.2. Altura de la Planta (cm): ... 46
3.9.3. Días del inicio de la floración (%): .. 47
3.9.4. Días al inicio de la formación de vainas (%): .. 47
3.9.5. Días a la madurez fisiológica (%): ... 48
3.9.6. Número de vainas por planta: ... 48
3.9.7. Longitud de vainas por planta (cm): ... 48
3.9.8. Número de granos por vaina: ... 49
3.9.9. Rendimiento de grano seco (g/planta): ... 49
3.9.10. Rendimiento de grano seco en kg/ha\(^{-1}\): ... 50
3.9.11. Humedad del grano (%): .. 50
3.9.12. Materia seca del grano (%): ... 51
3.9.13. Materia Orgánica del suelo: ... 51
CAPÍTULO IV
RESULTADOS Y DISCUSIÓN

4.1. Porcentaje de emergencia..54
4.2. Altura de planta..57
4.3. Días al inicio de floración...63
4.4. Días al inicio de la formación de vainas...69
4.5. Días al inicio de la madurez fisiológica...74
4.6. Número de vainas por planta..80
4.7. Longitud de vainas por planta...84
4.8. Número de granos por vaina...88
4.9. Rendimiento de grano seco en gramos por planta...92
4.10. Rendimiento de grano seco en gr/parcela y kg/ha^{-1}..96
4.11. Porcentaje de materia seca y humedad de grano...101
4.12. Análisis sensorial de tarwi...105

CONCLUSIONES ..111
RECOMENDACIONES ..112
BIBLIOGRAFÍA ...113
ANEXOS ...117
ÍNDICE DE TABLAS

Tabla 1: Porcentaje de emergencia, para el factor cultivares para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019.54

Tabla 2: Altura de planta por efecto de factor cultivares de tarwi, para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019.57

Tabla 3: Altura de planta por efecto de factor abono orgánico, para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019.59

Tabla 4: Altura de planta por efecto de factor interacción (tarwi*abono orgánico), para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019.61

Tabla 5: Días al inicio de floración por efecto de factor cultivares, para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019.64

Tabla 6: Días al inicio de floración por efecto de factor abono orgánico, para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019.65

Tabla 7: Días al inicio de floración por efecto de factor interacción (tarwi*abono orgánico), para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019.67

Tabla 8: Días al inicio de formación de vainas por efecto de factor cultivares, para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019.70

Tabla 9: Días al inicio de formación de vainas por efecto de factor abonos orgánicos, para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019.71

Tabla 10: Días al inicio de formación de vainas por efecto de interacción de factores (tarwi*abono orgánico), para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019.73
Tabla 11: Días al inicio de la madurez fisiológica por efecto de factor cultivares, para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019. ... 75

Tabla 12: Días al inicio de la madurez fisiológica por efecto de factor abono orgánico, para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019. ... 77

Tabla 13: Días al inicio de la madurez fisiológica por efecto de la interacción de factores (tarwi*abono orgánico), para la adaptabilidad de 3 cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019. ... 78

Tabla 14: Número de vainas por planta por efecto de factor cultivares, para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019. ... 80

Tabla 15: Número de vainas por planta por efecto de factor abono orgánico, para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019. ... 81

Tabla 16: Número de vainas por planta por efecto de la interacción de factores (tarwi*abono orgánico), para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019 ... 82

Tabla 17: Longitud de vainas por planta por efecto de factor cultivar, para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019. ... 84

Tabla 18: Longitud de vainas por planta por efecto de factor abono orgánico, para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019. ... 85

Tabla 19: Longitud de vainas por planta por efecto de interacción de factores (tarwi*abono orgánico), para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019. ... 86

Tabla 20: Número de granos por vaina por efecto de factor cultivar, para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019. ... 88

Tabla 21: Número de granos por vaina por efecto de factor sustrato, para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019. ... 89
Tabla 22: Número de granos por vaina por efecto de interacción de factores (tarwi*abono orgánico), para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019...90

Tabla 23: Rendimiento de grano seco en gramos por planta por efecto de factor cultivar, para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019...92

Tabla 24: Rendimiento de grano seco en gramos por planta por efecto de factor principal abono orgánico, para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019...93

Tabla 25: Rendimiento de grano seco en gramos por planta por efecto de interacción de factores (tarwi*abono orgánico), para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019...94

Tabla 26: Rendimiento de grano seco en gramos por planta por efecto de factor principal abono orgánico, para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019...96

Tabla 27: Rendimiento de grano seco en gramos por planta por efecto de interacción de factores (tarwi*abono orgánico), para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019...97

Tabla 28: Rendimiento de grano seco en gramos por planta por efecto de interacción de factores (tarwi*abono orgánico), para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019...98

Tabla 29: Porcentaje de materia seca y humedad de grano por efecto de factor cultivar, para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019...101

Tabla 30: Porcentaje de materia seca y humedad de grano por efecto de factor abono orgánico, para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019...103

Tabla 31: Porcentaje de materia seca y humedad de grano por efecto de interacción de factores (tarwi*abono orgánico), para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019...104

Tabla 32: Análisis sensorial de tarwi (ocopa), para determinar el cultivar que tiene mayor preferencia por el consumidor, en el trabajo experimental: Adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019...106
Tabla 33: Análisis sensorial de tarwi (torta), para determinar el cultivar que tiene mayor preferencia por el consumidor, en el trabajo experimental: Adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019. ...107

Tabla 34. Análisis sensorial de tarwi (chicha), para determinar el cultivar que tiene mayor preferencia por el consumidor, en el trabajo experimental: Adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019. ...108
ÍNDICE DE GRÁFICOS

Gráfico 1: Porcentaje de emergencia por efecto cultivares de tarwi, para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019. ... 55

Gráfico 2: Altura de planta por efecto de factor cultivares de tarwi, para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019. ... 58

Gráfico 3: Altura de planta por efecto de factor sustratos, para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019. 60

Gráfico 4: Altura de planta por efecto de factor interacción (tarwi*abono orgánico), para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019. ... 62

Gráfico 5: Días al inicio de floración por efecto de factor cultivares, para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019. ... 64

Gráfico 6: Días al inicio de floración por efecto de factor abono orgánico, para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019. ... 66

Gráfico 7: Días al inicio de floración por efecto de factor interacción (tarwi*abono orgánico), para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019. ... 68

Gráfico 8: Días al inicio de formación de vainas por efecto de factor cultivares, para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019. ... 70

Gráfico 9: Días al inicio de formación de vainas por efecto de factor abonos orgánicos, para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019. ... 72

Gráfico 10: Días al inicio de formación de vainas por efecto de interacción de factores (tarwi*abono orgánico), para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019. ... 73
Gráfico 11: Días al inicio de la madurez fisiológica por efecto de factor cultivares, para la adaptabilidad de 3 cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019. .. 75

Gráfico 12. Días al inicio de la madurez fisiológica por efecto de factor abono orgánico, para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019. .. 77

Gráfico 13: Días al inicio de la madurez fisiológica por efecto de la interacción de factores (tarwi*abono orgánico), para la adaptabilidad de 3 cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019. .. 79

Gráfico 14: Número de vainas por planta por efecto de factor cultivares, para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019. .. 80

Gráfico 15: Número de vainas por planta por efecto de factor abono orgánico, para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019. .. 81

Gráfico 16: Número de vainas por planta por efecto de la interacción de factores (tarwi*abono orgánico), para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019. .. 83

Gráfico 17: Longitud de vainas por planta por efecto de factor cultivar, para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019. .. 85

Gráfico 18: Longitud de vainas por planta por efecto de factor abono orgánico, para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019. .. 86

Gráfico 19: Longitud de vainas por planta por efecto de interacción de factores (tarwi*abono orgánico), para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019. .. 87

Gráfico 20: Número de granos por vaina por efecto de factor cultivar, para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019. .. 88

Gráfico 21: Número de granos por vaina por efecto de factor sustrato, para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019. .. 89
Gráfico 22: Número de granos por vaina por efecto de interacción de factores (tarwi*abono orgánico), para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019. 91

Gráfico 23: Rendimiento de grano seco en gramos por planta por efecto de factor cultivar, para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019. 92

Gráfico 24: Rendimiento de grano seco en gramos por planta por efecto de factor abono orgánico, para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019. 93

Gráfico 25: Rendimiento de grano seco en gramos por planta por efecto de interacción de factores (tarwi*abono orgánico), para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019. 95

Gráfico 26: Rendimiento de grano seco en gr/parcela y kg/ha por efecto de factor cultivar, para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019. 97

Gráfico 27: Rendimiento de grano seco en gr/parcela y kg/ha por efecto de factor abono orgánico, para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019. 98

Gráfico 28: Rendimiento de grano seco en gr/parcela y kg/ha por efecto de interacción de factores (tarwi*abono orgánico), para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019. 99

Gráfico 29: Porcentaje de materia seca y humedad de grano por efecto de factor cultivar, para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019. 102

Gráfico 30: Porcentaje de materia seca y humedad de grano por efecto de factor abono orgánico, para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019. 103

Gráfico 31: Porcentaje de materia seca y humedad de grano por efecto de interacción de factores (tarwi*abono orgánico), para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019. 104

Gráfico 32: Análisis sensorial de tarwi (ocopa), para determinar el cultivar que tiene mayor preferencia por el consumidor, en el trabajo experimental: Adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019. 106
Gráfico 33: Análisis sensorial de tarwi (torta), para determinar el cultivar que tiene mayor preferencia por el consumidor, en el trabajo experimental: Adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019. ... 107

Gráfico 34: Análisis sensorial de tarwi (chicha), para determinar el cultivar que tiene mayor preferencia por el consumidor, en el trabajo experimental: Adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019. ... 108
ÍNDICE DE CUADROS

Cuadro 1. Superficie cosechada de tarwi, por departamento al año 2016...........................5
Cuadro 2. Comparativo nutricional entre el tarwi, la soya y el frijol...............................6
Cuadro 3. Porcentaje de consumo de alimentos andinos en Lima.................................7
Cuadro 5. Variedades y principales ecotipos de tarwi (Lupinus mutabilis Sweet) cultivados..19
Cuadro 6. Características técnicas de cultivares de tarwi, según INIA - 2015........................22
Cuadro 7. Riqueza en nutrientes del Guano de Islas..25
Cuadro 8. Riqueza de nutrientes en el abono tipo Bocashi...27
Cuadro 9. Composición del Humus de Lombriz...28
Cuadro 10. Indicaciones para la fertilización con humus de lombriz..............................28
Cuadro 11. Composición de bioferimento de pescado Flis Mares.................................29
Cuadro 12. Datos meteorológicos registrados durante el periodo de desarrollo del cultivo..34
Cuadro 13. Análisis de suelo – caracterización para el terreno experimental de Sabandía..35
Cuadro 14. Tratamientos estudiados..39
Cuadro 15. Diseño estadístico..40
Cuadro 16. Nivel de abonamiento con diferentes enmiendas orgánicas.......................43
Cuadro 17. Escala de calificación hedónica..52
ÍNDICE DE FOTOS

Foto 1. Fenología del cultivo de tarwi. Fuente: SENAMHI .. 15
Foto 2. Preparación de Bocashi ... 37
Foto 3. Croquis del área experimental .. 41
Foto 4. Emergencia de tarwi .. 46
Foto 5. Altura de planta ... 46
Foto 6. Inicio a la floración .. 47
Foto 7. Cuajado de frutos ... 47
Foto 8. Madurez fisiológica ... 48
Foto 9. Longitud de vaina ... 49
Foto 10. Ecotipos: SLP – 4; Yunguyo, SCG – 25 ... 49
Foto 11. Rendimiento de grano ... 49
Foto 12. Rendimiento de grano .. 50
Foto 13. Determinación de humedad .. 50
Foto 14. Degustación de platos en base a tarwi .. 53
Foto 15. Evaluación sensorial y encuesta ... 53
Foto 16. Preparación del terreno, surcos ... 144
Foto 17. Identificación de bloques, parcelas .. 144
Foto 18. Emergencia a 13 días .. 144
Foto 19. Preparación de bocashi (izq) y aplicación bocashi (der) 145
Foto 20. Inicio de floración .. 145
Foto 21. Cosecha .. 145
RESUMEN

Se estudió la adaptabilidad de tres cultivares de tarwi (*Lupinus mutabilis* Sweet) con la incorporación de enmiendas orgánicas en base a Guano de Isla, Bocashi y Humus de lombriz en condiciones edafoclimáticas de Sabandía-Arequipa. El trabajo de campo se desarrolló entre mayo y diciembre del año 2017. Los objetivos fueron determinar el cultivar de tarwi que tenga mejor adaptabilidad para la zona agrícola de Arequipa y la mejor enmienda orgánica en el rendimiento de grano de tarwi. Los efectos principales estudiados fueron: Tres cultivares de tarwi (Yunguyo, SCG-25, SLP-4) y tres niveles de enmiendas orgánicas guano de isla (1250 kg ha\(^{-1}\)); Bocashi (12000kg ha\(^{-1}\)); Humus de lombriz (6000kg ha\(^{-1}\)); estudiándose 12 combinaciones entre ambos, el Diseño experimental utilizado fue Bloques Completos al Azar con arreglo factorial (3x4) con tres repeticiones. Se realizó la prueba de significación de Duncan (\(\alpha = 0,05\)). Las enmiendas orgánicas se incorporaron cuando la planta tenía 15 a 20 cm de altura, se realizó la apertura con un punzón situado a 10 cm de cada planta, se aplicó la dosis correspondiente y se tapó con tierra de cultivo. Se aplicó en forma homogénea a todos los tratamientos un bioestimulante para complementar la nutrición orgánica en los procesos vitales de la planta con la aspersión foliar del biofermento Fhis Mares; aplicada en tres oportunidades (Etapa vegetativa, prefloración, llenado de vainas) en concentración de 500ml/200L. Por los resultados encontrados refieren que el cultivar SCG-25 con aplicación de Guano de isla con un nivel de abonamiento de 1250 kg ha\(^{-1}\) (tratamiento SCG-25*GI) lograron el mayor rendimiento de grano seco obteniendo 1295.29 kg ha\(^{-1}\), para el efecto cultivar SCG-25 logro el mayor rendimiento de grano seco de tarwi con 961kg ha\(^{-1}\); para el efecto de mejor enmienda orgánica, la obtuvo la aplicación de guano de isla (1250 kg ha\(^{-1}\)) obteniendo 943kg ha\(^{-1}\) de grano seco.

Palabras clave: Adaptabilidad, cultivares de tarwi, guano de isla, humus de lombriz, bocashi.
ABSTRACT

The adaptability of three tarwi cultivars (Lupinus mutabilis Sweet) was studied with the incorporation of organic amendments based on Guano de Isla, Bocashi and Earthworm Humus under soil and climate conditions in Sabandía-Arequipa. The field work was carried out between May and December of 2017. The objectives were to determine the tarwi cultivar that has better adaptability for the Arequipa agricultural area and the best organic amendment in tarwi grain yield. The main effects studied were: Three tarwi cultivars (Yunguyo, SCG-25, SLP-4) and three levels of organic island guano amendments (1250 kg ha\(^{-1}\); Bocashi (12000 kg ha\(^{-1}\); Earthworm humus (6000 kg ha\(^{-1}\)); studying 12 combinations between them, the experimental design used was randomized complete blocks with factorial arrangement (3x4) with three repetitions. The Duncan significance test (\(\alpha=0.05\)) was performed. Organic amendments were incorporated when the plant was 15 to 20 cm high, the opening was made with a punch located 10 cm from each plant, the corresponding dose was applied and covered with arable land. A biostimulant was applied homogeneously to all treatments to complement organic nutrition in the vital processes of the plant with the foliar spray of the Fhis Mares bioferment; applied three times (vegetative stage, pre-flowering, filling of pods) in a concentration of 500ml/200L. Based on the results found, they report that cultivating SCG-25 with the application of Island Guano with a fertilization level of 1250 kg ha\(^{-1}\) (SCG-25*GI treatment) achieved the highest dry grain yield, obtaining 1295.29 kg ha\(^{-1}\), for cultivation effect SCG-25 achieved the highest yield of dried tarwi grain with 961kg ha\(^{-1}\); For the purpose of better organic amendment, the application of island guano (1250 kg ha\(^{-1}\)) was obtained, obtaining 943kg ha\(^{-1}\) of dry grain.

Keywords: Adaptability, tarwi cultivars, island guano, earthworm humus, bocashi.
CAPÍTULO I
INTRODUCCIÓN

En la actualidad, la humanidad viene tomando conciencia del continuo y sistemático deterioro ambiental y su efecto sobre nuestra calidad de vida. La necesidad de consumir productos saludables va en aumento, alimentos que no solo aporten nutrientes como proteínas y carbohidratos sino que cuiden nuestra salud; siendo una de las razones la preocupación del consumidor por el uso indiscriminado de agroquímicos aplicados en las diferentes etapas de los cultivos en la agricultura convencional y que dejan residualidad en los alimentos que a diario consumimos, poniendo en riesgo nuestra salud; frente a esta amenaza, surge la necesidad de plantear un cambio radical en la forma de producir los alimentos mediante la promoción de una agricultura orgánica y aprovechar las ventajas de un producto ecológico en su aspecto sensorial, ambiental, nutricional y de salud.

El tarwi es una leguminosa andina; de alto contenido proteínico, grasas no saturadas, fibras y minerales; incluso en mayor cantidad que otros granos andinos como la quinua y la kiwicha. Debido a estas cualidades organolépticas y nutricionales es considerada como la “Soya de los Andes” y en la actualidad empieza a proyectarse al exterior como un producto orgánico de exportación; en este contexto es conveniente iniciar programas de investigación que revaloren nuestros cultivos andinos, manejados en forma orgánica; lo que a su vez generaría el desarrollo económico y social de los agricultores.

El tarwi, es cultivado para el autoconsumo de la población de la sierra y costa norte del Perú, es un alimento muy versátil, se pueden preparar diversos platos, postres y bebidas de excelente calidad nutricional que pueden contribuir a mejorar problemas de nutrición y anemia infantil reportados por el Ministerio de Salud. El tarwi, es considerado como la semilla del futuro por el PNUD (Programa para las Naciones Unidas para el desarrollo), por su resistencia a los cambios climáticos adversos por los que actualmente pasamos, se adapta a bajas temperaturas, poca lluvia, se cultiva en suelos pobres, no requiere de fertilizantes,
resistente a plagas y enfermedades, bajo costo de producción y poca mano de obra, lo hacen expectante.

Además, este cultivo es considerado como mejorador de suelos degradados, como es el caso del suelo agrícola en Sabandía -Arequipa que presenta deficiencias en materia orgánica y nitrógeno necesarios para el rendimiento de los cultivos. A través de la adaptación de este cultivo podríamos lograr restituir la fertilidad del suelo debido a la facultad que tienen las leguminosas de fijar nitrógeno (200kg/ha/campaña), al actuar en simbiosis con bacterias nitrificantes como la *Rizobium lupini* proporcionando este nutriente a las plantas y dejando restos en el suelo para ser aprovechados en una rotación de cultivos.

En consecuencia, con la finalidad de desarrollar una agricultura amigable con el medio ambiente; hemos investigado el abonamiento orgánico en el cultivo de tarwi en base a la incorporación de enmiendas orgánicas como son el Guano de Isla, el Humus de Lombriz, el Bocashi con el propósito de mejorar las condiciones del suelo y la aspersión foliar del bioestimulante orgánico “Fhis Mares” los cuales permitirán una nutrición equilibrada de las plantas y por consiguiente lograr un buen rendimiento de grano; buscando promover el manejo orgánico del cultivo, obtendremos productos saludables y nutritivos libres de residuos tóxicos; representarán una opción de alimentación saludable y nutritiva que mejorara la calidad de vida y contribuirá a la seguridad alimentaria de la población.

HIPÓTESIS:

La adaptabilidad de tres cultivares de tarwi bajo la incorporación de enmiendas orgánicas en base a guano de isla, bocashi y humus de lombriz en niveles apropiados tendrán un efecto positivo en el rendimiento de grano de tarwi, bajo las condiciones edafoclimáticas de Sabandía – Arequipa.
OBJETIVOS:

Objetivo General.
- Evaluar la adaptación de tarwi (*Lupinus mutabilis* Sweet) y el impacto del abonamiento orgánico en la campiña de Arequipa.

Objetivos Específicos.
- Determinar el cultivar de tarwi de mejor adaptabilidad para la zona agrícola de Arequipa.
- Determinar la mejor enmienda orgánica en el rendimiento del cultivo de tarwi.
- Evaluar el rendimiento en grano de los cultivares en estudio.
2.1. El Tarwi

El tarwi (*Lupinus mutabilis* Sweet) es una leguminosa herbácea de granos comestibles, originaria de la región andina de Ecuador, Perú y Bolivia. Crece en las alturas que fluctúan entre 2,800 a 3,900 msnm en condiciones extremas donde otras leguminosas de grano no prosperarían. La importancia del grano de tarwi radica en su valor nutricional, alto contenido de proteínas (41 a 51%), aceite rico en ácidos grasos no saturados, fibras y minerales como el calcio, fosforo, hierro, zinc y es considerada como la “Soya de los Andes”. Es un cultivo de gran potencial productivo e industrial, en la obtención de aceite para consumo humano y subproductos para la dieta animal (DRA, 2013).

Su principal limitante es la presencia de sustancias amargas “Alcaloides” que les dan un sabor amargo a los granos, por lo que es indispensable un proceso de lavado antes de ser consumido, constituyendo una desventaja frente a las habas, arvejas, que su consumo es directo.

El cultivo de tarwi cumple un rol agronómico en las rotaciones de cultivo destinadas a la preservación de la fertilidad del suelo mediante la fijación de nitrógeno del aire en simbiosis con la actividad de bacterias del género *Rhizobium lupini* presentes en los nódulos de las raíces y que enriquecen el suelo de cultivo (Gross, 1982).

2.2. Origen

El origen del tarwi (*Lupinus mutabilis* Sweet) se atribuye a dos grupos, los del viejo mundo (Mediterráneo) y los del nuevo mundo en la zona andina (Ecuador, Perú, Bolivia). Esta leguminosa fue domesticada y cultivada por los antiguos pobladores de la región andina central desde épocas preincaicas, habiéndose encontrado semillas en tumbas de la cultura
Nazca y representaciones en la cultura Tiahuanaco. Empleando las semillas como alimento (FAO, 1995).

2.3. Distribución geográfica del tarwi en el Perú.

En el Perú se le cultiva principalmente en Cajamarca, La Libertad, Ancash, Junín, Huánuco, Ayacucho, Cuzco, Puno; siendo las variedades más utilizadas, Cuzco, Kayra, Altagracia, Andenes 80, Yunguyo, HG, SCG-9, SLP-1, SLP-4 (DRA, 2013).

Alrededor del lago Titicaca en Puno su cultivo está concentrado en la zona de Yunguyo, Pomata y Juli en suelos arenosos a más de 3820 msnm y son variedades más tolerantes al frío y de crecimiento precoz (Lescano, 1994: citado por FAO, 2007).

<table>
<thead>
<tr>
<th>DEPARTAMENTO</th>
<th>SUPERFICIE COSECHADA (toneladas métricas)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amazonas</td>
<td>75</td>
</tr>
<tr>
<td>Ancash</td>
<td>842</td>
</tr>
<tr>
<td>Apurímac</td>
<td>1,463</td>
</tr>
<tr>
<td>Ayacucho</td>
<td>360</td>
</tr>
<tr>
<td>Cajamarca</td>
<td>420</td>
</tr>
<tr>
<td>Cusco</td>
<td>3,048</td>
</tr>
<tr>
<td>Huancavelica</td>
<td>831</td>
</tr>
<tr>
<td>Huánuco</td>
<td>1,011</td>
</tr>
<tr>
<td>Junín</td>
<td>523</td>
</tr>
<tr>
<td>La Libertad</td>
<td>4107</td>
</tr>
<tr>
<td>Pasco</td>
<td>48</td>
</tr>
<tr>
<td>Puno</td>
<td>1893</td>
</tr>
<tr>
<td>Total</td>
<td>14019</td>
</tr>
</tbody>
</table>

2.4. Importancia del tarwi

2.4.1. Valor nutritivo del grano.

Legumínosa anual que produce granos de la forma de un frijol. El grano de Tarwi contiene: Proteína (41 a 51%), cantidades adecuadas de lisina, cistina y metionina; aceite (14 a 24%) es de color claro, aceptable para uso doméstico, rico en ácidos grasos no saturados, incluyendo el ácido linoleico, oleico, araquidónico. El contenido de fibra no es excesivo, pero constituye una fuente de minerales (DRA, 2013).

Cuadro 2. Comparativo nutricional entre el tarwi, la soya y el frijol.

<table>
<thead>
<tr>
<th>COMPONENTE</th>
<th>TARWI (%)</th>
<th>SOYA (%)</th>
<th>FRIJOL (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proteína</td>
<td>44.3</td>
<td>33.4</td>
<td>22.0</td>
</tr>
<tr>
<td>Grasa</td>
<td>16.5</td>
<td>16.4</td>
<td>1.6</td>
</tr>
<tr>
<td>Carbohidratos</td>
<td>28.2</td>
<td>35.5</td>
<td>60.0</td>
</tr>
</tbody>
</table>

Fuente: Morón 2005, Mujica y Jacobsen 2006

Patrones de consumo alimentario ADEX, 1997.

Los hábitos sobre los alimentos por tradición se difunden en los hogares, generan el consumo de los tubérculos y granos andinos. En la cultura alimentaria andina existe preferencia por cultivar cierto tipo de alimentos, así como, ciertas formas de conservar los alimentos y su preparación. La escasa transferencia de conocimientos en los medios de comunicación masiva, sobre producción, almacenamiento, procesamiento y consumo de los cultivos andinos, no permiten promover la adopción de un mayor consumo de los alimentos nativos en la canasta alimentaria.

El estudio de demanda de cultivos andinos realizado por ADEX, demostraron que en la ciudad de Lima se consumen productos andinos.
Cuadro 3. Porcentaje de consumo de alimentos andinos en Lima.

<table>
<thead>
<tr>
<th>Alimento</th>
<th>Diario</th>
<th>Semanal</th>
<th>Mensual</th>
<th>Menos</th>
<th>No Consume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ulluco</td>
<td>0.3</td>
<td>53.6</td>
<td>6.5</td>
<td>0.6</td>
<td>4.0</td>
</tr>
<tr>
<td>Quinua</td>
<td>13.5</td>
<td>23.1</td>
<td>10.5</td>
<td>3.8</td>
<td>--</td>
</tr>
<tr>
<td>Kiwicha</td>
<td>12.8</td>
<td>21.7</td>
<td>10.7</td>
<td>7.2</td>
<td>39.0</td>
</tr>
<tr>
<td>Tarwi</td>
<td>1.0</td>
<td>24.4</td>
<td>25.5</td>
<td>23.7</td>
<td>77.0</td>
</tr>
</tbody>
</table>

En relación al tarwi, el consumo varía de acuerdo al periodo agrícola y a la zona agroecológica, así tenemos, que en la zona Quechua, existen periodos (labores culturales y pos cosecha), donde no se consume tarwi, este mismo fenómeno ocurre en la zona Puna. El consumo promedio de tarwi es 7.7 g/d en todas las zonas del estudio y el aporte de energía promedio al total de la energía consumida es de 0.77%. Es necesario utilizar diferentes recursos para difundir su consumo, recetarios de cocina, concursos de platos elaborados a base de cultivos nativos, etc. estimular en el consumidor la demanda de "alimentos nutritivos" y entre ellos, los cultivos andinos.

2.4.2. Uso alimenticio.

El grano de tarwi se utiliza en la alimentación humana previa eliminación del sabor amargo. Se consume como snack o en platos diversos: ceviche serrano, sopas, cremas, postres y refrescos. Industrialmente se obtiene harina que se usa hasta un 15 % en la preparación de panes, galletas. El aceite de tarwi, es de color claro, aceptable para el uso doméstico; similar al aceite de maní (DRA, 2013).

2.4.3. Valor agronómico.

El tarwi, como leguminosa su aporte es valioso en la rotación de cultivos porque preserva la fertilidad del suelo mediante la fijación de nitrógeno atmosférico a través de la simbiosis con las bacterias Rizobium lupini. En estado de floración la planta se incorpora a la tierra
como abono verde mejorando el suelo (materia orgánica, estructura, retención de humedad) obteniéndose incrementos en la producción de papa y cereales. Efecto en la disminución de la incidencia del gorgojo de los andes, principal plaga de cultivo de la papa y control de otros insectos (Salis, 1985).

2.4.4. Uso medicinal.

Las leguminosas contienen un importante componente las isoflavonas, de importancia terapéutica, actuando como estrogénicas en el balance hormonal en las mujeres, combate la osteoporosis, fuente de antioxidantes; por la presencia de alcaloides puede ser usado como repelente de insectos (Tapia, 2015).

2.4.5. Alcaloides.

Los alcaloides (esparteína, lupinina, lupanidina, etc.) se emplean para el control de parásitos y ocasionalmente los agricultores usan el agua de cocción de tarwi como laxante y para el control de plagas en las plantas (FAO, 1995).

2.4.6. Procesamiento: Desamargado de los granos de tarwi.

Según Bocangel (2001), los campesinos han utilizado una tecnología sencilla para eliminar los alcaloides del grano a través de un lento proceso de cocción y lavado. El grano desamargado es de sabor agradable e inoloro.

El desamargado del grano de tarwi puede ser de dos formas:

Manual: Limpieza de grano de impurezas (Residuo de cosecha, tierra, piedras, semillas malogradas) se selecciona el grano por tamaño y se cocina en abundante agua sin sal hasta que quede suave por lo menos una hora y luego se elimina el agua y se introduce en costales y se deja en agua corriente de 3 a 4 días, hasta que quede libre de sustancias amargas. Proceso que además de ocasionar la pérdida de los nutrientes, como la proteína y carbohidratos solubles, no tiene ningún control en el aspecto sanitario.
Industrial: selección, clasificación y limpieza de grano con zarandas, se hidrata por 12 horas y se lleva a cocción en cilindro u olla a presión; se realiza el lavado en cilindro con una llave de salida para permitir el flujo de agua. Secar expuesto al sol, almacenar y empacar.

A continuación el producto es seleccionado, eliminando granos con cotiledones verdes, negros o manchas negras o cafés en la cubierta. Finalmente el grano está listo para el consumo humano y puede ser conservado en refrigerador por 90 días sin perder sus cualidades organolépticas y nutricionales.

2.4.7. Producción de tarwi en región Puno

Cuadro 4. Puno: Superficie sembrada, cosechada; producción, rendimientos y precios en chacra del tarwi campañas agrícolas (2000-2010).

<table>
<thead>
<tr>
<th>CAMPAÑA AGRÍCOLA</th>
<th>SUPERFICIE SEMBRADA (ha)</th>
<th>PERDIDAS (ha)</th>
<th>SUPERFICIE COSECHADA (ha)</th>
<th>PRODUCCION (t)</th>
<th>RENDIMIENTO (Kg/ha)</th>
<th>PRECIOS EN CHACRA (S/. /Kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000-2001</td>
<td>1,246</td>
<td>20</td>
<td>1,226</td>
<td>1,377</td>
<td>1,123</td>
<td>1.31</td>
</tr>
<tr>
<td>2001-2002</td>
<td>1,238</td>
<td>0</td>
<td>1,238</td>
<td>1,529</td>
<td>1,285</td>
<td>1.30</td>
</tr>
<tr>
<td>2002-2003</td>
<td>1,299</td>
<td>0</td>
<td>1,299</td>
<td>1,678</td>
<td>1,291</td>
<td>1.08</td>
</tr>
<tr>
<td>2003-2004</td>
<td>1,286</td>
<td>40</td>
<td>1,282</td>
<td>1,598</td>
<td>1,246</td>
<td>1.06</td>
</tr>
<tr>
<td>2004-2005</td>
<td>1,333</td>
<td>0</td>
<td>1,333</td>
<td>1,674</td>
<td>1,255</td>
<td>1.04</td>
</tr>
<tr>
<td>2005-2006</td>
<td>1,321</td>
<td>2</td>
<td>1,319</td>
<td>1,650</td>
<td>1,250</td>
<td>1.05</td>
</tr>
<tr>
<td>2006-2007</td>
<td>1,334</td>
<td>0</td>
<td>1,334</td>
<td>1,679</td>
<td>1,258</td>
<td>1.06</td>
</tr>
<tr>
<td>2007-2008</td>
<td>1,405</td>
<td>0</td>
<td>1,405</td>
<td>1,695</td>
<td>1,204</td>
<td>1.29</td>
</tr>
<tr>
<td>2008-2009</td>
<td>1,391</td>
<td>1</td>
<td>1,390</td>
<td>1,689</td>
<td>1,215</td>
<td>1.97</td>
</tr>
<tr>
<td>2009-2010</td>
<td>1,471</td>
<td>0</td>
<td>1,471</td>
<td>1,871</td>
<td>1,272</td>
<td>2.17</td>
</tr>
</tbody>
</table>

Fuente: Agencia Agraria de la DRA-PUNO, 2012.
En reportes de la DRA Puno (2012), La producción por provincias de la región Puno se concentra en las provincias de Yunguyo con 1,473 t. que representa el 79%, Chucuito produce 164 t. que representa el 9%, Huancané con 125 t. que representa el 7%, Carabaya con 47 t. que representa el 2% y el Collao con 28 t. que representa el 1%, Puno y Sandia muestran una producción del 1% como se muestra en la figura 1.

Figura 1: Producción de tarwi por provincias en Puno, 2010.

El rendimiento se encuentra entre 1,123 kg ha\(^{-1}\), como mínimo y 1,291 kg ha\(^{-1}\), como máximo, teniendo un promedio de 1,240 kg ha\(^{-1}\), rendimientos obviamente poco alentadores, pudiendo alcanzar de 2,000 a 5,000 kg ha\(^{-1}\), en la sierra cuando el cultivo es conducido en forma adecuada y se le proporcionan todos sus requerimientos en forma oportuna, sin embargo, aún no se dan las condiciones para mejorar los rendimientos en kg ha\(^{-1}\).

Respecto al precio en chacra durante los años 2001 al 2008 muestran un promedio 1.14 s/kg; y en los dos últimos años (2009 y 2010), se ha incrementado considerablemente pasando de 1.97 s/kg, a 2.17 s/kg., debido al alza del costo de vida y mayor demanda del producto, además el productor, se siente incentivado para aumentar su superficie del cultivo.

Su principal mercado es Lima, y su demanda va creciendo debido a sus características nutricionales, seguido de Arequipa y otras provincias.
2.4.8. Perspectivas de Comercialización del Grano Seco de Tarwi.

Según MINAGRI (2019), los principales granos andinos son quinua, cañihua, kiwicha y tarwi (chocho) y su cultivo es el sustento de 120 mil familias en el país. Las regiones productoras son Puno, Ayacucho, Apurímac, Cusco, La Libertad, Cajamarca, entre otros. El potencial de los granos andinos del mercado interno es alto dadas sus cualidades nutricionales y versatilidad gastronómica, son considerados súper alimentos o superfoods, por sus altos contenidos de proteínas, minerales, fibra y aceites esenciales, los cuales contribuyen de manera significativa a una buena nutrición y salud de sus consumidores. Hoy el consumo per cápita anual de granos andinos llega a los 2,3 kilogramos, pero la meta del sector al año 2021 es incrementar su consumo hasta los 3,5 kilos por persona. Por ello, el “Día Nacional de los Granos Andinos” el 30 de junio de cada año, representa una importante plataforma generada por el Estado para seguir impulsando la producción y consumo de estos valiosos alimentos como son la quinua, cañihua, kiwicha o amaranto y tarwi ó chocho.

En relación al tarwi son 12 las regiones productoras de tarwi liderando La Libertad con 34% de la producción nacional seguido de Cusco con 22%, Apurímac, Puno y Huánuco con el 13%, 10 % y 8% respectivamente y en menor porcentaje Junín 4%, Huancavelica 3 % y otros con 6%. Los rendimientos a nivel nacional por región son: Apurímac lidera con 2,232 kg ha\(^{-1}\), seguido de Huancavelica con 1,783 kg ha\(^{-1}\), Puno con 1,350 kg ha\(^{-1}\), Cusco con 1,196 kg ha\(^{-1}\), Ayacucho con 1,184 kg ha\(^{-1}\), Huánuco con 1,126 kg ha\(^{-1}\), La Libertad con 1,348 kg ha\(^{-1}\), Junín con 1,282 kg ha\(^{-1}\), Ancash con 995 kg ha\(^{-1}\), Cajamarca con 877 kg ha\(^{-1}\) (MINAGRI, 2017).

El destino de la producción de grano seco de tarwi el 48% del total producido se destina a la venta directa, el 27,5 % se dirige al autoconsumo y el 7,9 % a semilla. Los precios en chacra se considera una tendencia creciente en los últimos años, el precio promedio ha pasado de S/. 0,72 por Kg en el año 2,007 a S/. 3,38 por Kg en el 2,018 (ENA, 2019).
En cuanto a la exportación del grano de tarwi seco llegó a 4 mercados en el año 2,017 siendo el Ecuador el principal demandante donde llega el 98,79% y en menor medida España, Estados Unidos e Inglaterra; con un precio de exportación creciente el 2,015 a 0,80 US$, el 2016 y 2,017 a 0,73 US$, el 2018 a 0,81 US$ (MINAGRI, 2018).

2.5. Botánica del tarwi.

2.5.1. Clasificación taxonómica.

Clasificación taxonómica del tarwi según Tapia (2015).

- Reino : Vegetal
- División : Fanerogama
- Clase : Dicotiledónea
- Orden : Fabales
- Suborden : Leguminosae
- Familia : Fabaceae
- Género : Lupinus
- Especie : Lupinus mutabilis
- Nombre científico: Lupinus mutabilis Sweet
- Nombre común: Tarwi, chocho, tahuri y otros.

2.5.2. Características morfológicas

Según la FAO (1995), El tarwi, es una planta anual, de tamaño variable de 0,4 – 2,5 m, dependiendo del genotipo y medio donde se cultive.

- Raíz.

La raíz es pivotante con eje principal grueso, las raíces secundarias son ramificadas con presencia de pequeños nódulos simbióticos con bacterias del género Rhizobium lupini, pueden fijar nitrógeno del aire que sería un aporte para un próximo cultivo entre 40 y 80 kg ha⁻¹ de nitrógeno.
- **Tallo.**

 Presenta un tallo único, cilíndrico y ligeramente aplanado, hueco, leñoso, presenta ramificación simpodial.

- **Hojas.**

 Palmeadas, de tipo digitado con un número variable de foliolos de 5 a 12 y con escasa pubescencia.

- **Inflorescencia.**

 Es un racimo terminal, con Flores verticiladas, cada uno de 5 flores, alcanza su mayor longitud en el eje principal disminuyendo progresivamente en los laterales; cuyos colores varían desde el azul, morado, celeste, rosado hasta el blanco. Las flores en un 50-70% no llegan a formar frutos, especialmente en ramas secundarias y terciarias debido a la abscisión floral.

- **Fruto.**

 Es una legumbre, de forma elíptica, de 6 a 10 cm de largo por 2 cm de ancho, con extremos agudos; siendo pubescentes cuando son tiernos y lisos a la madurez. El número de vainas varía del 1 a 22 de acuerdo al cuajado de los frutos y maduran en forma escalonada desde la parte basal a la terminal.

- **Semilla.**

 Son de forma lenticular, en número de 1 a 8 por vaina; de color variable: blanco, gris, baya, marrón, negro, marmoteado, blancas con pinta de ceja, bigote. Cien semillas pesan entre 20 y 28 g.

- **Ciclo vegetativo.**

 Varía entre 150 y 360 días, dependiendo del genotipo y si se considera la maduración del eje central solo, o la de las demás ramas.
2.6. Fases de desarrollo

Según Caicedo y Peralta (2001), se consideran dos etapas o fases de desarrollo: Fase vegetativa, involucra el aparecimiento de las hojas verdaderas hasta la presencia de la inflorescencia en el eje central. Fase reproductiva, del inicio de la floración hasta la maduración completa de las vainas.

Emergencia: Ocurre a los 12 dds y termina cuando los dos cotiledones están completamente desplegados horizontalmente sobre el nivel del suelo.

Primera hoja verdadera: Del epicótilo aparece la primera hoja verdadera y se despliega completamente. Aquí ocurre el crecimiento rápido y termina con la ramificación tricotómica.

Formación del racimo floral en el eje central: Del brote terminal aparece el primer racimo floral, lo cual coincide con la ramificación tricotómica y las plántulas tienen de 4 a 5 hojas.

Floración: Empieza cuando se abre la primera flor del racimo del tallo central, esto ocurre entre los 80 y 120 dds. Esta fase es susceptible a granizo y sequías.

Envainado: Se inicia cuando la corola de la primera flor se marchita y aparece la primera vainita, teniendo la forma característica de uña de gato, esto ocurre 7 a 10 días después de la floración.

Madurez de vainas: Ocurre cuando la semilla alcanza su tamaño normal y adquieren el color característico de la variedad.

Madurez fisiológica: Las vainas adquieren una coloración pajiza y se secan, completando así su ciclo vegetativo.

Madurez de cosecha: Las vainas cambian a un color amarillo pajizo y al mover las plantas las vainas producen un sonido de cascabel; segar las plantas, llevar a la era y formar parvas para que terminen de secar. Trillar.
2.6.1. Fenología del cultivo de tarwi

Foto 1. Fenología del cultivo de tarwi. Fuente: SENAMHI.

2.7. Requerimientos climáticos y edáficos.

Temperatura.

No tolera heladas en la fase de formación del racimo y madurez, sin embargo, algunos ecotipos cultivados a orillas del Lago Titicaca son más tolerantes al frío y de crecimiento precoz (FAO, 1995).

Durante el crecimiento la temperatura óptima durante el día oscila entre 20 y 25 °C. Temperaturas por encima de los 28 °C interfieren en el óptimo desarrollo de la planta. Para favorecer el desarrollo de los granos, especialmente para la formación de sustancias de reserva (aceite) se requiere una temperatura nocturna relativamente baja, por debajo de los 9.5 °C. (Gross, 1982).

La diferencia de temperaturas entre el día y la noche propias de la zona andina incrementado al final del periodo de crecimiento favorecen la acumulación de grasa en el grano de tarwi; sin embargo, las heladas antes de maduración producen granos “chupados”, mermando la calidad y rendimiento de grano seco (FAO, 2007).
Precipitación.

El tarwi debe tener entre 500 y 700 mm de lluvia, del cual el período donde se requiere mayor cantidad de agua es en la formación de flores y frutos (Gross, 1,982).

Suelos.

El lupino se adapta muy bien a suelos de textura gruesa y arenosa de laderas con relativa baja fertilidad. En suelos orgánicos el crecimiento vegetativo será estimulado, retardándose la floración. En suelos pesados con menos aireación y mal drenaje, la producción de *Rhizobium lupini* se reduce y se puede estimular la presencia de enfermedades fungosas (FAO, 2007).

2.8. Aspectos agronómicos.

Época de siembra.

La época de siembra es variable de acuerdo a las zonas e inicio de lluvias. En secano (septiembre a noviembre) a inicio de la temporada de lluvia en la región Puno; y bajo riego todo el año como monocultivo o asociado (Salis, 1,985).

Preparación del terreno.

Se ejecuta con yunta o tractor según el tipo de suelo y rotación de cultivo. En la altura se practica labranza mínima justificable por el poco desarrollo de malezas y por la necesidad de conservar la humedad del suelo y reducir los problemas de erosión por viento o agua (FAO, 1995).

Siembra

La siembra se hace al voleo, siembra directa o sin volteo del terreno. Actualmente en surcos, que facilitan el abonamiento, riego, desahijé y deshierbo. Se recomienda distanciamientos de 0.60 a 0.80 m entre surcos y 0.30 a 0.40 m entre plantas; de 3 a 4 semillas por golpe, a una profundidad de siembra de 2 a 4 cm y a una densidad de siembra de 60 a 80kg ha⁻¹ (FAO, 2007).
Abonamiento.

El abonamiento en el cultivo de Tarwi, consiste en la aplicación al suelo de fuentes de abono orgánico descompuesto, principalmente de origen animal, con la finalidad de mejorar la calidad del suelo en textura y estructura, así como incrementar su capacidad de retención de agua en el suelo. El suministro del abono puede realizarse antes de la siembra, esparciéndolo e incorporándolo con la aradura, pero es mejor hacerlo a surco corrido antes de la siembra. Se recomienda aplicar de 5 a 10 t/ha. Las fuentes de materia orgánica más conocidas son: Estiércol o guano de corral descompuesto; compost; humus de lombriz y guano de isla, puede aplicarse hasta 2 t ha⁻¹ (INIA, 2015).

La cantidad de guano de islas recomendado en la fertilización del cultivo de tarwi es de 10 sacos de 50 kg (500 kg distribuidos en una hectárea). El abonamiento con guano de las islas se realiza en la siembra para el mejor aprovechamiento del cultivo (DRA, 2013).

Control de malezas.

Se realiza deshierbó manual de 15 a 20 días después de la siembra para evitar la competencia por nutrientes, agua, luz o espacio y el aporque cuando las plantas alcancen de 20 a 30 cm de altitud (FAO, 2007).

Riego.

Se requiere de 350 a 700 mm/ciclo vegetativo en zona de secano y un riego por semana si el cultivo es bajo riego. El cultivo de tarwi es susceptible a la escasez de agua en periodos de germinación, floración y envainado.

Cosecha.

Las vainas han madurado cuando adquieren una coloración amarillenta, para proceder al cortado y trillado. El tarwi presenta una floración diferenciada entre las ramas principales y las secundarias, por lo que, en muchas ocasiones, se requiere de dos a tres épocas de cosecha (FAO, 2007).
2.9. Cultivares.

Según Gross (1982), menciona que; el tarwi es una leguminosa anual, de la cual se usa en la alimentación el grano; conocido como chocho en el norte de Perú y Ecuador, tarwi en el centro del Perú y tahuri en el sur del Perú y Bolivia.

El tarwi presenta una gran variedad morfológica y de adaptación ecológica en los andes, por lo que se puede considerar tres subespecies:

Lupinus mutabilis, chocho (norte de Perú y Ecuador), de mayor ramificación, muy tardio, mayor pilosidad en las hojas y tallos, algunos ecotipos se comportan como bianuales, tolerantes a la antracnosis.

Lupinus mutabilis tarwi (centro y sur del Perú), de escasa ramificación, medianamente tardio, algo tolerante a la antracnosis.

Lupinus mutabilis, tahuri (altiplano de Perú y Bolivia), de menor tamaño (1-1,40m) con un tallo principalmente desarrollado, muy precoz, susceptible a antracnosis.

El centro de origen de *Lupinus mutabilis* Sweet estaría ubicado en la región andina de Ecuador, Perú, Bolivia, ya que en ella se encuentra la mayor variabilidad genética. Las variedades y cultivares conocidos son numerosos; en el Perú, Andenes 80, Cuzco, Kayra, Yunguyo, Altagracia, H-6, SCG-9, SCG-25, SLP-1, SLP-2, SLP-3, SLP-4, SLP-5; en Bolivia: Toralapa y Carabuco; en Chile, Inti libre de alcaloides (FAO, 1995).
Cuadro 5. Variedades y principales ecotipos de tarwi (*Lupinus mutabilis* Sweet) cultivados.

<table>
<thead>
<tr>
<th>Variedad</th>
<th>Localidad</th>
<th>Característica</th>
</tr>
</thead>
<tbody>
<tr>
<td>PERÚ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cusco</td>
<td>Kayra, Cusco</td>
<td>Flor blanca</td>
</tr>
<tr>
<td>Kayra</td>
<td>E.E. Andenes</td>
<td>Alto rendimiento</td>
</tr>
<tr>
<td>Altagracia</td>
<td>Huamachuco</td>
<td>Tolerante a antracnosis</td>
</tr>
<tr>
<td>Puno</td>
<td>Puno</td>
<td>Precoz</td>
</tr>
<tr>
<td>H6</td>
<td>Huancayo</td>
<td>Buen rendimiento</td>
</tr>
<tr>
<td>SCG-25</td>
<td>Cusco</td>
<td>Buen rendimiento</td>
</tr>
<tr>
<td>SCG-9</td>
<td>Cusco</td>
<td>Alto rendimiento</td>
</tr>
<tr>
<td>SLP-1 y SLP-4</td>
<td>E.E. Camacani</td>
<td>Precoz (150 días)</td>
</tr>
<tr>
<td>Andenes 80</td>
<td>E.E. Andenes</td>
<td>Alto rendimiento</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>E.E. Illpa</td>
<td>Alto rendimiento</td>
</tr>
<tr>
<td>BOLIVIA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toralapa</td>
<td>Cochabamba</td>
<td>Precoz</td>
</tr>
</tbody>
</table>

Descripción de cultivares según INIA 2017.

Cultivar Yunguyo

- Altitud 3847 m.s.n.m.
- Suelo: se adapta suelos pobres de textura gruesa con pH relativamente alto (pH 8).
- Precipitación: es poco exigente de 300 a 500 mm por periodo vegetativo.
- Temperatura: 9.5 °C como mínima y 28 °C como máxima.
- Fotoperiodo: indiferente a la longitud del día, respuesta positiva a días cortos durante floración y fructificación.
- Viento: Bajo durante la polinización.
Cultivar SCG-25

- Altitud: 3219 msnm, bosque húmedo montañoso.
- Suelo: Arenoso, ácidos.
- Clima: templado, no sensible a humedad y aridez.
- Precipitación: exigente en agua de 350 a 800 mm
- Temperatura: 13 y 15 °C.
- Fotoperiodo: plantas de días cortos, 7 meses de duración.
- Viento: bajo durante la polinización.

Cultivar SLP-4

- Altitud: 3850 msnm, zona agroecológica suní circunlacustre.
- Suelo: franco arenoso de origen aluvial.
- Clima: frío y seco.
- Temperatura: mínima 6.5°C, máxima 9.9 C, media 7.6°C.
- Precipitación: 450 a 700 mm en dos etapas: Época lluviosa (noviembre a abril) y época seca (mayo a octubre).
- Fotoperiodo: indiferente a la longitud del día.
- Viento: bajo durante la polinización.

Agroecología de los cultivares de tarwi según Tapia (2015).

El cultivo de tarwi es sensible a heladas en la primera etapa vegetativa, es resistente a heladas al fin de floración a orillas del Lago Titicaca; temperaturas muy bajas “heladas” antes de la madurez del grano ocasiona mayor presencia de granos chupados afectando el rendimiento y la calidad de grano; la longitud del día en el comportamiento morfológico no es de importancia; el periodo vegetativo en la línea cerca al ecuador y valles el comportamiento de los cultivares es tardío; a mayor altitud en regiones más altas (Puno) el
comportamiento de los cultivares es más precoz; presenta diferencia en floración del tallo principal y secundarias presentando diferentes épocas de cosecha, el eje central madura de 1 a 2 meses antes que las ramas laterales. El rendimiento por hectárea está en el rango de 800 a 1300 kg ha\(^{-1}\) en un cultivo tradicional y 2500 kg ha\(^{-1}\) en cultivo tecnificado.

Las principales especies alimenticias originarias en los andes son la quinua, cañihua, isaño, tarwi, chocho (*Lupinus mutabilis* Sweet) se desarrolla desde los 500 a 3800 msnm y en zona agroecológica yunga, quechua, suní (FAO, 1995).

Características productivas.

Las principales características agronómicas (Jacobsen y Mujica 2004), son: Periodo vegetativo (de 140-233 días), días a la floración (56-86 días), características morfológicas de planta y semilla, rendimiento de grano (800 – 2,736 kg ha\(^{-1}\)).

Según INIA, 2015 recomienda que la variedad a sembrar depende del fin de la producción, por lo que debe tenerse las siguientes consideraciones:

- Producción de semilla.
- Producción para consumo familiar o para comercializar.
- Demanda de la variedad.
- Variedades de corto periodo vegetativo, que ayudan a obtener cosecha en época de bajas precipitaciones (lluvias).
- Tolerantes a plagas en general
- Es de vital importancia contar con semilla de calidad, cuya procedencia puede ser del mismo productor, de una casa expendedora de semillas, o de instituciones como Universidades, INIA u otras instituciones públicas o privadas de prestigio.

<table>
<thead>
<tr>
<th>Nombre científico</th>
<th>Lupinus mutabilis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variedades mejoradas</td>
<td>Andenes 80, Yunguyo, SCG-22</td>
</tr>
<tr>
<td>Adaptación</td>
<td>2000 a 3800 msnm</td>
</tr>
<tr>
<td>Requerimiento de lluvia</td>
<td>400 a 600 mm</td>
</tr>
<tr>
<td>Periodo vegetativo</td>
<td>210 a 240 días.</td>
</tr>
<tr>
<td>Densidad de siembra</td>
<td>Por golpes: 35 a 40 kg ha⁻¹</td>
</tr>
<tr>
<td></td>
<td>Chorro continuo: 60 a 80kg ha⁻¹</td>
</tr>
<tr>
<td>Distanciamiento</td>
<td>Entre golpes: 0,40 m</td>
</tr>
<tr>
<td></td>
<td>Entre surcos: 0,80 m</td>
</tr>
<tr>
<td>Rendimiento potencial</td>
<td>Andenes 80: 2,5t ha⁻¹</td>
</tr>
<tr>
<td></td>
<td>Yunguyo: 1,8t ha⁻¹</td>
</tr>
<tr>
<td></td>
<td>SCG-22: 2,0 t ha⁻¹</td>
</tr>
<tr>
<td></td>
<td>SLP-4: 1,5 t ha⁻¹</td>
</tr>
<tr>
<td></td>
<td>SCG-25: 3,0 t ha⁻¹</td>
</tr>
</tbody>
</table>

Fuente: INIA 2015

2.10. Plagas y enfermedades.

Es una planta relativamente tolerante a enfermedades fungosas y a plagas, sin embargo, en condiciones ambientales húmedas pueden presentarse problemas como la antracnosis; la enfermedad se puede propagar por las semillas infestadas, mostrando síntomas a la emergencia de plántulas en las hojas cotiledonales; también roya y fusarium; se recomienda emplear semilla sana y desinfectar la semilla antes de sembrar.

Las plagas más comunes son las larvas cortadoras de plántulas tiernas como Agrotis sp, Feltia sp; Minadores de hojas como Liriomyza sp (FAO, 2007).
2.11. Los Abonos Orgánicos.

Son sustancias que están constituidas por desechos de origen animal, vegetal o mixto que se añaden al suelo con el objeto de mejorar sus características físicas, biológicas y químicas. Estos pueden consistir en residuos de cosechas, cultivos para abonos en verde (principalmente leguminosas fijadoras de nitrógeno); restos orgánicos de la explotación agropecuaria (estiercol, purín); compost preparado con las mezclas de los compuestos antes mencionados. Estos abonos influyen en la estructura del suelo. Asimismo, aportan nutrientes y modifican la población de microorganismos en general, de esta manera se asegura la formación de agregados que permiten una mayor retención de agua, intercambio de gases y nutrientes, a nivel de las raíces de las plantas (Gomero y Velásquez, 1999).

Enmienda orgánica. Se define como todo material orgánico que se aplica al suelo, con el propósito de suministrar nutrientes rápidamente disponibles para la planta y mejorar las condiciones físicas del suelo. Estas sustancias se llaman comúnmente abonos (Sarmiento, 2014).

2.11.1. Guano de Islas.

AGGRURAL (2015), menciona que se origina de la acumulación de las deyecciones de las aves guaneras que habitan en las islas y puntas del litoral peruano. Es un fertilizante natural completo, ideal para el buen crecimiento, desarrollo y producción del cultivo, contiene macro-micronutrientes como nitrógeno, fosforo y potasio; elementos secundarios como el calcio, magnesio y azufre. También contiene micro elementos como el hierro, zinc, cobre, manganeso, boro y molibdeno.

Propiedades del Guano de Islas.

a. Es un fertilizante natural y completo. Contiene todos los nutrimentos que la planta requiere para su normal crecimiento y desarrollo.

b. Es un producto ecológico. No contamina el medio ambiente.
c. Es biodegradable. El Guano de las Islas completa su proceso de mineralización en el suelo, transformándose parte en humus y otra se mineraliza, liberando nutrientes a través de un proceso microbiológico.

d. Mejora las condiciones físico-químicas y microbiológicas del suelo. En suelos sueltos se forman agregados y en suelos compactos se logra la soltura. Incrementa la capacidad de intercambio catiónico (C.I.C.), favorece la absorción y retención del agua. Aporta flora microbiana y materia orgánica mejorando la actividad microbiológica del suelo.

e. Es soluble en agua. De fácil asimilación por las plantas (fracción mineralizada).

f. Tiene propiedades de sinergismo. En experimentos realizados en cultivos de papa, en cinco lugares del Perú, considerando un testigo sin tratamiento, se aplicó el Guano de las Islas, estiércol y una mezcla de ambos. En los cinco lugares experimentados, la producción se incrementó significativamente con el tratamiento Guano de las Islas + estiércol.

Momentos y dosis de aplicación del guano de islas.

A leguminosas de grano como arveja, frijol, haba: El momento de aplicación es cuando la plántula tiene 10 a 15 cm. Aplicar 100% de la recomendación con guano de islas o cuando las plantas tienen 10 – 15 cm de altura aplicar el 50 % de la dosis recomendada y la otra mitad aplicar al aporque. La dosis de aplicación para hortalizas es 500 – 1000 kg ha\(^{-1}\) (MINAGRI, 2015).

Características químicas

El Guano de las Islas es un abono orgánico natural completo, ideal para el buen crecimiento, desarrollo y producción de cosechas rentables. Viene siendo utilizado en la producción orgánica, en plátano (banano), café, cacao, quinua, kiwicha, y otros.
Cuadro 7. Riqueza en nutrientes del Guano de Islas.

<table>
<thead>
<tr>
<th>ELEMENTOS</th>
<th>FÓRMULA/SÍMBOLO</th>
<th>CONCENTRACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrógeno</td>
<td>N</td>
<td>10 - 14%</td>
</tr>
<tr>
<td>Fosforo</td>
<td>P2O5</td>
<td>10 – 12%</td>
</tr>
<tr>
<td>Potasio</td>
<td>K2O</td>
<td>2 - 3 %</td>
</tr>
<tr>
<td>Calcio</td>
<td>CaO</td>
<td>8%</td>
</tr>
<tr>
<td>Magnesio</td>
<td>MgO</td>
<td>0.50 %</td>
</tr>
<tr>
<td>Azufre</td>
<td>S</td>
<td>1.50 %</td>
</tr>
<tr>
<td>Hierro</td>
<td>Fe</td>
<td>0.032 %</td>
</tr>
<tr>
<td>Zinc</td>
<td>Zn</td>
<td>0.0002 %</td>
</tr>
<tr>
<td>Cobre</td>
<td>Cu</td>
<td>0.024 %</td>
</tr>
<tr>
<td>Manganeso</td>
<td>Mn</td>
<td>0.020%</td>
</tr>
<tr>
<td>Boro</td>
<td>B</td>
<td>0.016 %</td>
</tr>
<tr>
<td>Flora microbiana</td>
<td>Hongos y bacterias benéficas</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: AGRORURAL, 2011

2.11.2. El Bocashi

El bocashi es un sistema de preparación de abono orgánico de origen japonés que puede requerir no más de 10 o 15 días para estar listo para su aplicación; sin embargo, es mejor si se aplica después de los 25 días, para dar tiempo a que sufra un proceso de maduración. Bocashi significa fermento suave (no obstante, es un tipo de compost) y se considera provechoso porque sale rápido, utiliza diversos materiales en cantidades adecuadas para obtener un producto equilibrado y se obtiene de un proceso de fermentación (CEDECO, 2005).

Materiales para la preparación del Bocashi según Sarmiento (2014).

Los materiales orgánicos a utilizarse son los desechos disponibles en la parcela; para preparar 55 a 60 sacos de abono orgánico fermentado tipo bocashi se requiere:

- 40 – 45 sacos de estiércol desmenuzado (gallina, vaca, conejo, cuy, caballo, oveja, cerdo, llama).
- 10 sacos de rastrojo picado de cebada, avena, maíz, haba, arveja, trigo, frijol, etc.
- 5 sacos de buena tierra agrícola sin piedra ni terrones.
• 1 saco de ceniza o carbón quebrado en partículas pequeñas.
• 1 saco de salvado o afrecho para engorde de animales.
• 500 gramos de levadura granulada para panificación.
• 4 litros de melaza o 6 kilos de azúcar rubia
• Agua a prueba de puño, más o menos entre 50 y 60 % de humedad.

Procedimiento para la preparación de bocashi.

• Extender un tercio de cada material en el siguiente orden: rastrojo picado, tierra, estiércol, carbón, ceniza, salvado o afrecho, aplicando poco a poco la solución de mezcla (agua, melaza o azúcar y levadura) para esta capa. se coloca las capas siguientes de la misma forma hasta alcanzar 1.2 m de altura.
• Se voltea tres veces con pala ajustando la humedad a un 40% (chequeo manual: se toma un puñado de la mezcla, se forma una pelota, que se rompe fácilmente)
• Se tapa bien con lona o plástico y se deja en reposo una a dos semanas. Se voltea diariamente para que el oxígeno entre en toda la mezcla, en este momento hay un olor agrodulce.
• Se hace el mismo procedimiento durante tres días, manteniendo la temperatura a 40 ºC y un olor agradable de la mezcla. Al cuarto día se extiende para secarlo, a unos 10 cm de alto. El color cambia a gris y adquiere un olor a moho. Después de secado está listo para aplicarlo al suelo. Puede guardarlo hasta por tres meses en un lugar fresco y seco.

Propiedades del bocashi.

Sencillo de preparar; usa insumos de la zona y económicos; proporciona materia orgánica en forma constante; mejora la fertilidad del suelo, los suelos conservan su humedad y mejora la penetración de los nutrientes; son benéficos para la salud de los seres humanos y animales, pues no son tóxicos, por lo tanto protegen el ambiente, la flora, la fauna y la
biodiversidad; favorecen el establecimiento y la reproducción de microorganismos benéficos en los terrenos de siembra, puede significar una fuente de ingreso para el agricultor (Sarmiento, 2014).

Cuadro 8. Riqueza de nutrientes en el abono tipo Bocashi.

<table>
<thead>
<tr>
<th>ELEMENTO</th>
<th>COMPOSICIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>1.23%</td>
</tr>
<tr>
<td>P</td>
<td>2.98%</td>
</tr>
<tr>
<td>K</td>
<td>1.05%</td>
</tr>
<tr>
<td>Ca</td>
<td>9.45%</td>
</tr>
<tr>
<td>Mg</td>
<td>0.62%</td>
</tr>
<tr>
<td>Fe</td>
<td>11975 ppm</td>
</tr>
<tr>
<td>Mn</td>
<td>345 ppm</td>
</tr>
<tr>
<td>Zn</td>
<td>274 ppm</td>
</tr>
<tr>
<td>Cu</td>
<td>234 ppm</td>
</tr>
<tr>
<td>B</td>
<td>5.34 ppm</td>
</tr>
<tr>
<td>Materia Org.</td>
<td>21.33 ppm</td>
</tr>
</tbody>
</table>

Fuente: PESA, 2017

2.11.3. Humus de Lombriz.

Es un compuesto orgánico producto de la descomposición orgánica producida de la digestión de la celulosa en el tracto intestinal de la lombriz *Eisenia foetidae*; es un abono bio-orgánico de estructura coloidal, se presenta como una masa desmenuzable, ligero e inodoro, es un proceso terminado muy estable, imputrecible y no fermentable.

Es muy rico en enzimas y microorganismos no patógenos, contiene fitohormonas importantes para el crecimiento de las plantas, contiene del orden de 20,000 millones de microorganismos benéficos por gramo de humus, contiene ácidos húmicos y fúlvicos,
minerales e inductores capaces de elevar el metabolismo de las plantas y favorecer la producción y el rendimiento comercial (Gonzales, 2005).

Cuadro 9. Composición del Humus de Lombriz.

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humedad</td>
<td>45%</td>
</tr>
<tr>
<td>Ph</td>
<td>6.8 – 7.1</td>
</tr>
<tr>
<td>C.E.</td>
<td>1.73 mmhos/cm</td>
</tr>
<tr>
<td>Materia orgánica</td>
<td>50 – 60</td>
</tr>
<tr>
<td>C</td>
<td>23.24 %</td>
</tr>
<tr>
<td>N</td>
<td>1.5 – 3.0%</td>
</tr>
<tr>
<td>C/N</td>
<td>14.52 %</td>
</tr>
<tr>
<td>P</td>
<td>1 – 1.5%</td>
</tr>
<tr>
<td>K</td>
<td>1 – 1.5%</td>
</tr>
<tr>
<td>Ca</td>
<td>1.86%</td>
</tr>
<tr>
<td>Mg</td>
<td>1.00%</td>
</tr>
<tr>
<td>Na</td>
<td>0.50%</td>
</tr>
<tr>
<td>Carga microbiana</td>
<td>20000</td>
</tr>
</tbody>
</table>

Microorganismos benéficos

Fuente: Gonzales, J. 2005

Para la aplicación, el terreno debe estar húmedo y colocar junto a la semilla y en la zona de enraizamiento en caso de trasplante.

Cuadro 10. Indicaciones para la fertilización con humus de lombriz.

<table>
<thead>
<tr>
<th>Cultivos</th>
<th>A la siembra por planta</th>
<th>Mantenimiento por planta.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frutales.</td>
<td>2 -5 kg</td>
<td>5 – 50 K cada año.</td>
</tr>
<tr>
<td>Rosa, arbustos</td>
<td>1 - 3 kg</td>
<td>1 -3 K cada 6 meses.</td>
</tr>
<tr>
<td>Plantas de interior(macetas)</td>
<td>200- 500 g</td>
<td>200 – 300 g cada 2 meses.</td>
</tr>
<tr>
<td>Hortalizas y flores</td>
<td>100 – 200 g</td>
<td>100 – 200 g cada 2 meses</td>
</tr>
<tr>
<td>Pastos o grass</td>
<td>1 – 2 k m2</td>
<td>1 2 K cada 6 meses.</td>
</tr>
<tr>
<td>Ajo, cebolla, papa</td>
<td>5 – 10 t ha⁻¹</td>
<td>Fraccionado.</td>
</tr>
<tr>
<td>Cítricos</td>
<td>5 – 10 t ha⁻¹.</td>
<td>Fraccionado.</td>
</tr>
<tr>
<td>Habas</td>
<td>5-10 t ha⁻¹</td>
<td>Fraccionado.</td>
</tr>
</tbody>
</table>

2.12. Los biofermentos

Los biofermentos son producto del proceso de fermentación de materiales orgánicos por medio de una intensa actividad microbiológica, los cuales son transformados en minerales, vitaminas, aminoácidos, ácidos orgánicos que servirán para la nutrición de las plantas; además, otro beneficio es que disminuyen la incidencia de plagas y enfermedades en los cultivos, debido a que la riqueza de los microorganismos presentes en ellos, al ser aplicados sobre las superficies de las plantas, tienen una reacción de competencia con los microorganismos que atacan los cultivos (Chaves y Guzmán, 2009).

2.13. Fish mares (Agrocampo Organic’s).

Es un bionutriente completo con acción bioestimulante y anti estresante obtenido por hidrolisis enzimática y procesos fermentativos de especies marinas (pescado anchoveta, sardina y algas marinas) tiene una alta concentración de aminoácidos pépticos, ácidos orgánicos, vitaminas, materia orgánica microorganismos benéficos macro y micro elementos en forma disponible. Abono liquido orgánico altamente asimilable por las plantas usado foliarmente y a través de sus raíces. Actúa como activador del desarrollo radicular, vegetativo y producción de frutos de calidad.

Cuadro 11. Composición de biofermento de pescado Fish Mares.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph</td>
<td>4.3</td>
</tr>
<tr>
<td>M.O. (en solución)</td>
<td>28.13%</td>
</tr>
<tr>
<td>Nitrógeno (N total)</td>
<td>20.5 g/L</td>
</tr>
<tr>
<td>Fosforo (P total)</td>
<td>2.81 g/L</td>
</tr>
<tr>
<td>Potasio (K total)</td>
<td>8.24 gr/L</td>
</tr>
<tr>
<td>Calcio (Ca total)</td>
<td>4.78 gr/L</td>
</tr>
<tr>
<td>Magnesio (Mg total)</td>
<td>0.79 gr/L</td>
</tr>
<tr>
<td>Fierro (Fe total)</td>
<td>82.80 mg/L</td>
</tr>
<tr>
<td>Zinc (Zn total)</td>
<td>5.52 mg/L</td>
</tr>
<tr>
<td>Manganeso (Mn total)</td>
<td>2.08 mg/L</td>
</tr>
<tr>
<td>Boro (B total)</td>
<td>11.83 mg/L</td>
</tr>
<tr>
<td>Cobre (Cu total)</td>
<td>3.16 mg/L</td>
</tr>
<tr>
<td>Aminoácidos libres</td>
<td>Mayor a 15%</td>
</tr>
</tbody>
</table>

Fuente: Fish Mares
Beneficios.

- Fortalece la planta, incrementando la formación de brotes y flores sanas y vigorosas, asegurando el cuajado y mayor obtención de frutos de calidad.
- Contribuye en la recuperación de cultivos frente a condiciones adversas como: Heladas, sequías, ataque de plagas y deficiencias nutricionales.
- Favorece la multiplicación de microorganismos benéficos en el suelo.

Usos y Aplicaciones.

- Cultivo de corto periodo: 200-500 ml/200 L de agua.
- En frutales: 800 ml-1L/200 L de agua.
- Se puede aplicar en cualquier época sin restricción, no causa desordenes fisiológicos en la planta. Aplicar en condiciones óptimas de humedad para facilitar la translocación de nutrientes.

2.14. Antecedentes

Hall (1980) Las caídas de hojas y flores características en esta especie disminuyen la obtención de mayor número de vainas por tanto menor cantidad de granos por planta. El tradicional manejo del cultivo de chocho por el agricultor puede presentar limitaciones en cuanto al no adicionar la adecuada necesidad de fósforo que requiere el cultivo, obteniéndose menor arquitectura de planta y volumen de raíces e influye en una baja remoción de nutrientes para el llenado de granos.

Huisa, J. (2018) en el trabajo de investigación “Evaluación del comportamiento agronómico de 14 accesiones del ensayo nacional de tarwi (Lupinus mutabilis Sweet) en CIP-Camacani-Puno, en la campaña agrícola del 2,017 y 2,018 con los objetivos de evaluar las características agronómicas de las 14 accesiones de tarwi, comparar los rendimientos y evaluar la adaptabilidad de las accesiones de tarwi. El material proviene del ensayo nacional de tarwi. Evaluados bajo diseño de DBCA con 4 bloques y 14 tratamientos y 56 unidades
experimentales. Los resultados fueron la accesión Puno 11 obtuvo mayor altura de planta con 157.5 cm seguida de la accesión Yunguyo con 154.4 cm, número de vainas por eje central Yunguyo logró 24.5 y la accesión SCG-22 33.5 vainas, madurez fisiológica para Yunguyo fue de 248.8 dds y SCG-22 221.3; rendimiento por planta era Yunguyo 1,904.50 y para SCG-22 1,833 kilos por hectárea.

Cáceres, D. (1999) En el trabajo de investigación realizado en la Irrigación de Majes – Arequipa a una altitud de 1410 msnm, el objetivo general fue evaluar la respuesta del tarwi a los 4 niveles de fertilización fosfórica en los cultivares Blanco y Plomo y el objetivo específico fue determinar el rendimiento de grano del tarwi en sus cultivares plomo y blanco, según su respuesta a la fertilización fosfórica: 00, 40, 80 y 120 unidades de P₂O₅. El Diseño experimental aplicado ha sido el de Bloques Completos al Azar, con arreglo factorial 2x4 y tres repeticiones. El suelo es de textura franco-arenosa, bajo en materia orgánica, nitrógeno, fósforo y alto nivel de potasio. Recomienda la fertilización con el nivel de 40 unidades de fosforo, acompañado de 20 unidades de nitrógeno y 60 unidades de potasio, para lograr un rendimiento de 1,34t ha⁻¹. La emergencia al 92% se logró a los 6 dds sin diferencia significativa entre cultivares; la floración a los 78 dds; cuajado de frutos a los 100 dds; la altura de planta a los 120 dds (momento de cosecha) no mostró diferencia significativa para ningún factor; el número de granos por vaina con un promedio de 3.62 y peso de grano seco por planta en un promedio de 39.38 gr, mostrando respuesta significativa a la fertilización fosforada.

De la Cruz, (2018) en el trabajo de investigación “Caracterización Fenotípica y de Rendimiento Preliminar de Ecotipos de Tarwi (Lupinus mutabilis Sweet) en el Callejón de Huaylas – Ancash” se llevó a cabo en los terrenos del UNASAM, en el distrito de Marcará, provincia de Carhuaz, durante la campaña 2016. El material genético es procedente del Programa de Leguminosas y Granos de la UNALM, semillas obtenidas de colectas de
distintas partes del país, buscando incrementar la producción de tarwi en esta región del país con variedades que se adapten y presenten las mejores características y rendimientos. Realizado con apoyo de PNIA, el Programa de Leguminosas y Granos de la UNALM y la UNASAM, en la que al ver la diversidad de los materiales se clasificó en dos grupos, ecotipos provenientes del Centro y ecotipos provenientes del Sur del país. Se ha caracterizado morfológicamente a la planta, tallo, rama, hoja, flor y vaina. Los tratamientos para este proyecto fueron dispuestos bajo el Diseño Bloques Completamente al Azar, el número de tratamientos fue de 19 con tres repeticiones, se trabajó con nueve ecotipos provenientes del centro del país y diez ecotipos del sur. En la caracterización de tallo, todos los ecotipos evaluados no presentaron diferencias para tipo de crecimiento, formación de tallo, color, ramificación. La caracterización de hojas, no se encontró diferencias para formación de foliolos y color de hojas. Se encontró diferencias en el color de flor y grano. Entre los ecotipos del centro, bajo las condiciones del Callejón de Huaylas, Moteado beige fue el que ocupó los mayores rendimientos, llegando a alcanzar un rendimiento de 3711.15 kg/ha, mientras que los de menor rendimiento fueron los ecotipos Compuesto A y Compuesto B con rendimientos de 1141.65 y 738 kg/ha respectivamente. Para los ecotipo del sur, el que ocupó mayor rendimiento fue el ecotipo 03-10-214 con rendimientos de 2341.45 kg/ha y el de menor rendimiento fue MGP con 619.65 kg/ha. Respecto a Yunguyo logro altura promedio de 106.23 cm.; días a la floración 89 dds, número de vainas por inflorescencia 19; número de granos por vaina 3.63; rendimientos de grano por planta de 24.93 gr. y un rendimiento total de 1121.85 Kg/ha.
CAPÍTULO III
MATERIALES Y MÉTodos

3.1. Periodo de ejecución.

El trabajo experimental se llevó a cabo entre el 07 de mayo del 2017 al 02 de diciembre del 2017, con un periodo vegetativo de 7 meses.

3.2. Localización del campo experimental.

El cultivo de tarwi con fines de investigación se instaló y ejecuto en el distrito de Sabandía.

Presenta la siguiente ubicación:

Ubicación Política:
- Departamento: Arequipa.
- Provincia: Arequipa.
- Distrito: Sabandía

Ubicación Geográfica:
- Latitud: 16° 27’22´´ (S).
- Longitud: 71° 27´42´´ (w).
- Altitud: 2390 m.s.n.m.

3.3. Historial del campo.

Previamente a la instalación del trabajo de investigación en el terreno se sembraron:

AÑO CULTIVO
- 2015 - 2016 Maíz morado.

3.4. Condiciones climáticas.

Las condiciones climatológicas se presentan en el anexo 3 y se resumen en el siguiente cuadro:
Cuadro 12. Datos meteorológicos registrados durante el periodo de desarrollo del cultivo.

<table>
<thead>
<tr>
<th>Mes</th>
<th>Temperatura máxima (°C)</th>
<th>Temperatura mínima(°C)</th>
<th>Temperatura media (°C)</th>
<th>Humedad relativa (%)</th>
<th>Velocidad y dirección viento(m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mayo</td>
<td>20.54</td>
<td>5.99</td>
<td>13.88</td>
<td>77</td>
<td>SW-6.6</td>
</tr>
<tr>
<td>Junio</td>
<td>20.07</td>
<td>4.52</td>
<td>11.4</td>
<td>63</td>
<td>SW-6.6</td>
</tr>
<tr>
<td>Julio</td>
<td>20.66</td>
<td>5.12</td>
<td>12.4</td>
<td>46</td>
<td>SW-6.6</td>
</tr>
<tr>
<td>Agosto</td>
<td>20.74</td>
<td>4.99</td>
<td>12.2</td>
<td>56</td>
<td>SW-7.6</td>
</tr>
<tr>
<td>Setiembre</td>
<td>21.67</td>
<td>6.33</td>
<td>14.1</td>
<td>65</td>
<td>SW-5.3</td>
</tr>
<tr>
<td>Octubre</td>
<td>21.7</td>
<td>5.86</td>
<td>14.5</td>
<td>58</td>
<td>SW-6.0</td>
</tr>
<tr>
<td>Noviembre</td>
<td>21.11</td>
<td>5.59</td>
<td>15.0</td>
<td>69</td>
<td>SW-5.4</td>
</tr>
<tr>
<td>Diciembre</td>
<td>20.15</td>
<td>6.16</td>
<td>13.9</td>
<td>72</td>
<td>SW-5.2</td>
</tr>
</tbody>
</table>

Fuente: *SENAMHI, 2017*

En el cuadro anterior indica los datos de temperatura, humedad relativa y velocidad de viento registrados durante el desarrollo de la investigación (mayo a diciembre del 2017), la temperatura máxima 21.7°C (mes de octubre), la temperatura mínima de 4.52 ºC (mes de junio) y la temperatura media de 11.4°C (mes de junio) estando estas dentro de las requeridas por el cultivo de tarwi.

La humedad relativa máxima fue de 98% en el mes de mayo momento en el que se realizó la siembra del cultivo lo que propicio la presencia de enfermedades fungosas radiculares en la primera etapa vegetativa de las plantas.

Se tuvieron valores favorables de temperatura y humedad, durante la floración y fructificación, pero con valores altos de velocidad de viento lo cual desfavoreció la autopolinización de los cultivares y mermo el rendimiento en el cuajado de legumbres.
3.5. Registros edáficos.

Para la determinación de las características del suelo, se extrajo una muestra compuesta proveniente de la capa arable (15 cm) del campo experimental. El reporte del resultado de análisis de suelo se presenta en el anexo 1 y los cuales se resumen en el cuadro siguiente:

<table>
<thead>
<tr>
<th>DETERMINACIÓN</th>
<th>UNIDAD</th>
<th>VALOR</th>
<th>INTERPRETACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arena</td>
<td>%</td>
<td>61.6</td>
<td></td>
</tr>
<tr>
<td>Limo</td>
<td>%</td>
<td>32.4</td>
<td></td>
</tr>
<tr>
<td>Arcilla</td>
<td>%</td>
<td>6.0</td>
<td></td>
</tr>
<tr>
<td>Clase textural</td>
<td></td>
<td></td>
<td>Franco arenoso.</td>
</tr>
<tr>
<td>Ph</td>
<td></td>
<td>7.93</td>
<td>Moderadamente alcalino.</td>
</tr>
<tr>
<td>C.E.</td>
<td>mS/cm</td>
<td>0.43</td>
<td>Deficiente.</td>
</tr>
<tr>
<td>M.O.</td>
<td>%</td>
<td>2.31</td>
<td>Bajo.</td>
</tr>
<tr>
<td>N</td>
<td>%</td>
<td>0.12</td>
<td>Bajo.</td>
</tr>
<tr>
<td>P</td>
<td>Ppm</td>
<td>24.45</td>
<td>Alto.</td>
</tr>
<tr>
<td>K</td>
<td>Ppm</td>
<td>274.98</td>
<td>Alto.</td>
</tr>
<tr>
<td>CIC</td>
<td></td>
<td>16.876</td>
<td>Medio.</td>
</tr>
</tbody>
</table>

Fuente: Estación experimental – Arequipa INIA, 2016

Los resultados físicos nos muestran que se trata de un suelo franco arenoso, deficiente en retención de humedad, con buena capacidad de aireación del suelo.

El análisis químico indica que la presencia de materia orgánica y nitrógeno nos dan valores bajos con 2.31%, 0.12% respectivamente indicándonos que estos suelos carecen de materia orgánica y nitrógeno para la nutrición de los cultivos sin embargo podemos corregir este problema con la aplicación de enmiendas orgánicas al suelo además el tarwi es una leguminosa que por su naturaleza fija nitrógeno atmosférico enriqueciendo el nivel de este en el suelo.
En cuanto al aporte de fosforo y potasio nos dan valores altos adecuados para el cultivo. La C.E. 0.43 mS/cm sin problemas de salinidad, un pH de 7.93 con reacción moderadamente alcalino, lo que es apropiado, ya que favorece la descomposición de la materia orgánica y la actividad de organismos nitrificantes favoreciendo la disponibilidad de los nutrientes N, P, K, Ca, Mg, del suelo por la planta.

3.6. **Materiales.**

3.6.1. **Semilla.**

Se utilizó los cultivares denominados: Yunguyo, SCG-25, SLP-4; procedentes de la Universidad Nacional del Altiplano, Puno.

3.6.2. **Abonos orgánicos:**

- Guano de isla.
- Humus de lombriz.
- Bocashi.
- Biofermento de pescado (Fishmares).
- Estiércol de vacuno.

Preparación de bocashi

Para la investigación se usó insumos recomendados por Restrepo, 2010, Adaptado por Sarmiento; 2014.

Insumos:

- 1 saco de 30 kg. de estiércol de vacuno descompuesto.
- 20 kg de tierra de chacra seleccionada sin piedras.
- 3 kg de carbón triturado.
- 10 kg de afrecho de trigo.
- 24 unidades de chancaca diluida en 6 litros de agua caliente (Reemplaza a la melaza).
- 300 g de levadura de pan.
- 1 saco de restos vegetales (haba, nabó, arveja, pasto, rastrojos, etc.).
- 20 litros de agua.
- 2 kilos de cascará de huevo, lavado, seco y triturado.

Preparación

La preparación del bocashi se dio en un lugar protegido del sol y sombreado, se reunieron todos los materiales.

Se hicieron capas sucesivas de cada material en el siguiente orden: Estiércol de vacuno, tierra de chacra, carbón, restos vegetales, casara de huevo y se rocía por encima la mezcla de la solución de agua de chancaca tibia y levadura.

Obtenido el montón se comienzan a voltear con una lampa, de un lado a otro, procurando mezclar bien todos los ingredientes, aplicando agua para lograr la humedad adecuada (La humedad se mide apretando con el puño las muestras de diferentes lados; si el montón se desmorona está muy seco, si está muy húmedo escurre agua; si se siente la humedad y mantiene su forma al soltarlo está bien).

Terminada la mezcla de los materiales se extendió el montón dejándolo de unos 50 cm. de alto y se cubrió con sacos de polietileno, durante los 6 primeros días se dio vueltas 2 veces al día para evitar que se caliente demasiado; se humedeció para regular la humedad y favorecer la fermentación y evitar que suba la temperatura ya que si pasa de los 50 ºC se quema y pierda calidad biológica.

![Foto 2. Preparación de Bocashi](image)
A partir del día 3 se extendió más y se bajó el montón a unos 30 cm. de altura; el día 7 se destapo y hasta los 15 días se volvió una sola vez al día. Cuando estuvo de color gris claro, consistencia suelta y aroma dulce ha fermentado, se dejó en reposo por unos 15 días más para que sufra un proceso de maduración y su calidad mejore. Finalmente se guardó en sacos en un lugar fresco para su aplicación según la dosis propuesta.

3.6.3. **Equipo y material de campo:**

- Herramientas de labranza (lampa, pico, rastrillo, etc.).
- Estacas.
- Fichas de evaluación.
- Balanza.
- Letreros de identificación.
- Tijera.
- Asperjadora manual.
- Cámara fotográfica.
- Saco de rafia.
- Cinta métrica.
- Balanza digital.
- Rafía de colores.

3.6.4. **Material de gabinete:**

- Cuaderno de apuntes.
- Computadora.
- Calculadora
- Material bibliográfico.
- Material de escritorio.
3.7. Métodos:

3.7.1. Tratamientos evaluados.

Factores en estudio.

- Factor 01: Cultivares de tarwi: Yunguyo, SCG-25, SLP-4
- Factor 02: Enmiendas orgánicas de Guano de isla, humus de lombriz, bocashi.

Cuadro 14. Tratamientos estudiados.

<table>
<thead>
<tr>
<th>TRATAMIENTO</th>
<th>DESCRIPCIÓN</th>
<th>COMBINACIÓN TARWI-E. ORGANICA</th>
<th>DOSIS DE APLICACIÓN Kg ha-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SLP4(testigo)</td>
<td>SLP4-0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>SLP4-B</td>
<td>SLP4-Bocashi</td>
<td>12,000</td>
</tr>
<tr>
<td>3</td>
<td>SLP4-H.L.</td>
<td>SLP4-H.Lombris</td>
<td>6,000</td>
</tr>
<tr>
<td>4</td>
<td>SLP4-G.I.</td>
<td>SLP4-G.Isla</td>
<td>1,250</td>
</tr>
<tr>
<td>5</td>
<td>Y-(testigo)</td>
<td>Y-0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>Y-B.</td>
<td>Y-Bocashi</td>
<td>12,000</td>
</tr>
<tr>
<td>7</td>
<td>Y-H.L.</td>
<td>Y-H.Lombris</td>
<td>6,000</td>
</tr>
<tr>
<td>8</td>
<td>Y-G.I.</td>
<td>Y-G.Isla</td>
<td>1,250</td>
</tr>
<tr>
<td>9</td>
<td>SCG-25(testigo)</td>
<td>SCG-25-0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>SCG-25-B.</td>
<td>SCG-25-Bocashi</td>
<td>20,000</td>
</tr>
<tr>
<td>11</td>
<td>SCG-25-H.L.</td>
<td>SCG-25-H.Lombris</td>
<td>6,000</td>
</tr>
<tr>
<td>12</td>
<td>SCG-25-G.I.</td>
<td>SCG-25-G.Isla</td>
<td>1,250</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

3.7.2. Diseño experimental y prueba estadística.

El diseño estadístico que se utilizó es el Diseño Bloque Completamente al Azar con arreglo factorial (3 x 4), con 12 tratamientos y 3 repeticiones por tratamiento. Se utilizó la prueba de significación de Duncan (α= 0.05).
Cuadro 15. Diseño estadístico

<table>
<thead>
<tr>
<th>Fuentes de variabilidad</th>
<th>Grados de libertad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloques</td>
<td>2</td>
</tr>
<tr>
<td>Tratamientos</td>
<td>11</td>
</tr>
<tr>
<td>Cultivares de tarwi (T)</td>
<td>2</td>
</tr>
<tr>
<td>Enmiendas orgánicas (E)</td>
<td>2</td>
</tr>
<tr>
<td>T x E</td>
<td>4</td>
</tr>
<tr>
<td>Error experimental</td>
<td>22</td>
</tr>
<tr>
<td>Total</td>
<td>46</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

3.7.3. Dimensiones del área experimental.

Unidad experimental
- Largo de UE: 3.5m.
- Ancho de UE: 2.5m.
- Área de UE: 8.75 m².
- Distancia de UE: 0.5m.
- Numero de UE:36

Bloques:
- Numero de bloques: 3
- Largo de bloques: 25.5 m.
- Ancho de bloques: 19.9 m.
- Distancia entre bloques: 1 m.

Campo experimental
- Largo: 25.5 m.
- Ancho: 19.9 m.
- Área bruta: 507m.
- Área neta: 315m.
3.7.4. Croquis del área experimental.

Foto 3. Croquis del área experimental

3.8.1. Preparación del terreno.

La preparación del terreno se realizó con la limpieza de rastrojos de residuos de la cosecha anterior un riego pesado para suavizar el terreno y facilitar las labores de labranza. Luego con tracción animal (arado de yunta) se dio vuelta el suelo con el fin de soltar y airear el terreno. Se procedió a la limpieza final de residuos, nivelación y surcado a un distanciamiento entre surco y surco de 70 cm (6 surcos por unidad experimental) con la ayuda de una cinta métrica y estacas se delimito las unidades experimentales.

3.8.2. Incorporación de abono de fondo.

La incorporación de estiércol de vacuno descompuestos se incorporó al suelo en forma dirigida abriendo una “sangría” al costado de cada surco, con la finalidad de que el cultivo aproveche al máximo las propiedades nutricionales de este compuesto, a razón de 5 t ha\(^{-1}\).

3.8.3. Siembra.

La semilla de tarwi en sus cultivares Yunguyo, SCG - 25, SLP- 4 proceden de la ciudad de Puno, provincia de Yunguyo, se hizo una previa selección de granos eliminando granos partidos, manchados, chupados y que no correspondan al cultivar. Antes de la siembra la semilla fue tratada con Homai a razón de 100g /150kg de semilla para prevenir enfermedades causadas por hongos del suelo como \textit{Rhizoctonia solani}, \textit{Fusarium sp}, \textit{Verticillum sp}.

La siembra se realizó en forma manual con un suelo a capacidad de campo el día 07 de mayo del 2017, se usó un distanciamiento de 0.70 cm entre surcos y 0.40 cm entre plantas depositando 3 semillas por golpe a 0.3 cm de profundidad. A razón de 6 golpes por surco, un total de 36 golpes por unidad experimental.
3.8.4. Aplicación de las enmiendas orgánicas: Bocashi, Humus de Lombriz y Guano de Isla.

En la Irrigación majes, se introdujo el Tarwi como fuente de proteína y abono verde y se obtuvo rendimientos de 1,400 kg ha$^{-1}$ de grano seco, con una formulación de 60-80-60 de NPK respectivamente para el cultivar blanco del Cusco (Gross, 1982: citado por Cáceres, 1999).

En Ancash (DRA, 2013), menciona que no se ha encontrado respuesta significativa del cultivo común al abonamiento debido a que tradicionalmente el agricultor no hace la aplicación alguna y los ecotipos están adaptados a ese sistema. Pero para variedades mejoradas como la “Altagracia” se recomienda la dosis: 50 - 50 - 10, para ello aplicar 10 sacos de Guano de Isla/ha al momento de la siembra. Colocar el guano de isla a 10 cm de cada golpe. El tratamiento testigo solo se le aplicó abono de fondo y no se le adicionó enmiendas orgánicas; el manejo se realizó como usualmente lo hacen los agricultores de la zona alto andina. Las enmiendas orgánicas se aplicaron al suelo en dosis completa cuando la planta alcanzo los 15 a 20 cm de altura, se realizó la apertura de una sangría con un punzón situado a 10 cm de cada planta, se aplicó la dosis correspondiente y se tapó con la tierra de cultivo.

Cuadro 16. Nivel de abonamiento con diferentes enmiendas orgánicas.

<table>
<thead>
<tr>
<th>FUENTE ORGÁNICA</th>
<th>DOSIS DE ABONAMIENTO Kg ha$^{-1}$</th>
<th>NIVEL FERTILIZACIÓN N-P2O5 - K2O Kg ha$^{-1}$</th>
<th>RENDIMIENTO PROYECTADO t ha$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guano de Isla.</td>
<td>1 250</td>
<td>160-130-30</td>
<td>2</td>
</tr>
<tr>
<td>H. de lombriz.</td>
<td>6000</td>
<td>160-90-60</td>
<td>2</td>
</tr>
<tr>
<td>Bocashi</td>
<td>12 000</td>
<td>120-40-80</td>
<td>2</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia
3.8.5. Aplicación de fertilización foliar

La Aplicación de biofermento de pescado Fhis mares fue vía foliar, con la aspersión en tres oportunidades durante el periodo fenológico. La primera aplicación se realizó cuando la planta se encontraba en la etapa vegetativa la segunda en pre-floración y la última en el llenado de vainas. Con la concentración recomendada para leguminosas de grano 500mL/200 L.

3.8.6. Deshierbo y aporque.

El deshierbo se realizó en forma manual en tres oportunidades: El primero cuando la planta alcanzo los 20 cm de altura, con la aplicación de las enmiendas orgánicas y primer aporque antes de los 60 días después de la siembra.

El segundo deshierbo se realizó al momento de pre-floración con el segundo aporque y el último en el llenado de grano y maduración.

Se encontraron las siguientes malezas:

- Nabo silvestre (*Brassica campestris*)
- Bledo (*Amaranthus hibridus*)
- Diente de león (*Taraxacum officinale*)
- Amor seco (*Bidens pilosa*)
- Malva (*Malva silvestris*)
- Bolsa de pastor (*Capsella bursa-pastoris*)
- Liccha (*Chenopodium album*)

3.8.7. Control de plagas y enfermedades.

Se realizaron dos aplicaciones para el control de gusano ejército “caballada” (*Spodoptera eridania*) a la presencia de comeduras y larvas pequeñas sobre las hojas. Se usó Versus (*Emamectin benzoate*), en dosis 250ml/200L.
Se hizo aplicación preventiva de enfermedades radiculares contra *Fusarium sp*. A la presencia de marchitez de plántulas en primera etapa vegetativa. Se usó Benopoint 50 PM (Benomil) en dosis 50mL/200L.

Se aplicó en forma curativa contra *Fusarium sp* a la presencia de marchitez de plantas en prefloración. Se usó Luxazim (carbendazim) en dosis 100ml/20 L. dirigidas al cuello – raíz de planta. La aplicación de este producto se realizó junto a Graind (adherente) en dosis de 25ml/200L.

Se usó un enraizador orgánico ROOT PLEX (extracto de algas marinas) para estimular el desarrollo radicular e incrementar la absorción de nutrientes. Se aplicó junto al carbendazin al pie de planta. En dosis de 1 L / 200 L.

Se realizó una sola aplicación para el control de ácaros “arañita roja” (*Panonychus citri*) por infestación leve del follaje de algunas plantas. Se usó Pantera 80 WP (Azufre) en dosis 1 kg/200 L.

3.8.8. **Aplicación de Riegos.**

El sistema de riego fue por gravedad, la frecuencia de riego fue de 12 días. En época de floración y cuajado de frutos el riego fue semanal, se evitó los encharcamientos de agua en los distintos tratamientos, para prevenir la pudrición de raíces por enfermedades radiculares.

3.8.9. **Cosecha.**

El ciclo vegetativo del cultivo es de 7 meses y la cosecha se realizó en forma manual, cortando los tallos en la base de la planta, dejándolas extendidas en el suelo para conseguir un secado uniforme de tallos y vainas y finalmente recoger las vainas y obtener los granos limpios.
3.9. Evaluaciones.

3.9.1. Emergencia:

Se realizaron evaluaciones en dos surcos centrales de cada unidad experimental a 2, 4 y 6 días después de la siembra (dds) pero no se observó emergencia de plantas solo hasta el día 10 dds observándose plantas emergidas con los cotiledones completamente desplegados en forma horizontal al suelo.

![Foto 4. Emergencia de tarwi](image)

3.9.2. Altura de la Planta (cm):

Este parámetro se determinó a los 30, 60, 120 y 210 dds momento de la cosecha, con la ayuda de una regla graduada en centímetros, se midió a 10 plantas marcadas al azar de cada unidad experimental, considerando la altura desde el cuello de la planta hasta el punto de inserción con la inflorescencia.

![Foto 5. Altura de planta](image)
3.9.3. Días del inicio de la floración (%):

Se registraron el número de días transcurridos mediante observaciones diarias desde la siembra hasta que el 50% de las plantas iniciaron la aparición de botón floral en la inflorescencia del eje central de la planta. Para esto se consideraron a 10 plantas al azar de cada unidad experimental.

![Foto 6. Inicio a la floración.](image)

3.9.4. Días al inicio de la formación de vainas (%):

Se tomó en cuenta cuando se empezó a formar las primeras vainas que aparecerán forma de uña de gato, en la inflorescencia del eje central de la planta y después en inflorescencias secundarias. Para este parámetro se evaluaron 10 plantas marcadas al azar.

![Foto 7. Cuajado de frutos.](image)
3.9.5. Días a la madurez fisiológica (%):

Se registrará el número de días que transcurrirán desde la siembra hasta que el 90% de las plantas alcancen la madurez fisiológica. Esta fase fenológica se caracteriza por la diferenciación a simple vista de que las vainas presentan una coloración café claro a pajiza, la semilla difícilmente se parte con la presión de las uñas entre los dedos. Se evaluarán 10 plantas al azar de cada repetición.

Foto 8. Madurez fisiológica

3.9.6. Número de vainas por planta:

Se escogen 10 plantas por cada repetición, habiendo finalizado el desarrollo de la formación total de vainas, se realizará el conteo de vainas totales de la planta, considerando vainas con granos llenos, para cada cultivar. Se tomará el promedio.

3.9.7. Longitud de vainas por planta (cm):

De las 10 plantas tomadas al azar para la evaluación de numero de vainas por planta, se tomará 5 vainas de cada planta como promedio al azar para evaluar su longitud de cada una de ellas en cada cultivar. Para esto se utilizó una regla graduada, donde el tamaño se midió desde la parte basal hasta el ápice de la vaina.
3.9.8. Número de granos por vaina:

Se escogió 5 vainas al azar de cada unidad experimental y se procede a contabilizar el número de granos por vaina.

3.9.9. Rendimiento de grano seco (g/planta):

Se recoge las vainas de cada planta y se desgrana para llevar a la balanza y obtener el rendimiento por planta en gramos.
3.9.10. Rendimiento de grano seco en kg ha\(^{-1}\):

Una vez realizada la cosecha previa limpieza de granos, se lleva a pesar el total de granos de cada parcela obteniendo así el rendimiento en kg ha\(^{-1}\)

![Foto 12. Rendimiento de grano.](image)

3.9.11. Humedad del grano (%):

Se toma 10 g de grano por repetición para cada cultivar, los cuales son pesados en la balanza analítica para posteriormente ser llevados a estufa por 72 horas a 150\(^\circ\)C para después determinar la humedad del grano por diferencia de pesos.

![Foto 13. Determinación de humedad.](image)
3.9.12. **Materia seca del grano (%):**

Una vez determinada la humedad del grano se determina también el contenido de materia seca (MS) para cada repetición en cada cultivar.

3.9.13. **Materia Orgánica del suelo:**

En los suelos que ocupa cada tratamiento se tomará una muestra representativa de suelo antes y después de la cosecha final, esta muestra será remitida a laboratorio para la determinación de materia orgánica.

3.9.14. **Análisis sensorial:**

Se realizó una encuesta con participación del público para saber cuál de los tres cultivares presenta mayor aceptación calificando (Sabor, olor, textura, etc.) a través de la preparación y degustación de diferentes platos dulces y salados preparados con granos procesados de cada cultivar de tarwi.

Determinación de la preferencia de los alimentos por el método de la escala hedónica. “Se servirán varias porciones de alimentos para comer y se le pedirá que diga acerca de cada una, que tanto le agrada o desagrada. Utilice las escalas para indicar su actitud chequeando cual describe mejor sus sentimientos hacia el alimento. Tenga en mente que usted es el juez. Usted es el único que puede decir, qué le gusta. Nadie sabe siquiera si estos alimentos deben ser considerados buenos, malos o indiferentes. Una expresión honesta de su sentimiento personal nos ayudara a decidir. Beba un sorbo de agua después de acabar con cada muestra y luego espere por la siguiente” (Peryam y Pilgrim, 1957: citado por Nuñez, 2015).

Fundamento de la prueba hedónica.

Este método tiene la finalidad de medir un grupo pequeño, así como un gran número de personas, obteniéndose en ambos casos resultados confiables.

Este método puede ser utilizado por paneles de laboratorio, así como en encuestas de opinión por público consumidor.

51
Método.

En este método el panelista o evaluador (degustador) se le presenta una o más muestras en forma sucesiva conjuntamente a una tarjeta de evaluación, la misma que contiene una escala de nueve (9) enunciados (declaraciones); el panelista debe elegir el enunciado que mejor describe su actitud hacia el producto alimenticio sometido a evaluación.

Se realizó una tarjeta de evaluación la cual fue llenada por los participantes, siendo la siguiente calificación por escala:

<table>
<thead>
<tr>
<th>Escala</th>
<th>Valor Numérico</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gusta muchísimo.</td>
<td>9</td>
</tr>
<tr>
<td>Gusta mucho.</td>
<td>8</td>
</tr>
<tr>
<td>Gusta moderadamente.</td>
<td>7</td>
</tr>
<tr>
<td>Gusta poco.</td>
<td>6</td>
</tr>
<tr>
<td>Ni gusta ni disgusta.</td>
<td>5</td>
</tr>
<tr>
<td>Disgusta un poco.</td>
<td>4</td>
</tr>
<tr>
<td>Disgusta</td>
<td>3</td>
</tr>
<tr>
<td>moderadamente.</td>
<td></td>
</tr>
<tr>
<td>Disgusta mucho.</td>
<td>2</td>
</tr>
<tr>
<td>Disgusta muchísimo.</td>
<td>1</td>
</tr>
</tbody>
</table>

Fuente: Núñez 2015

Los resultados obtenidos pueden ser evaluados estadísticamente reemplazando las categorías de la escala por valores numéricos. Así se podría asignar el valor de 1 a la categoría menos positiva y se iría aumentando el valor hasta la categoría más positiva. Los resultados de la escala hedónica proveen confiabilidad (Núñez, 2015).

Foto 15. Evaluación sensorial y encuesta.
CAPÍTULO IV
RESULTADOS Y DISCUSIÓN

Para el análisis de varianza de los anexos, se ha seguido los criterios propuestos para el análisis de experimentos factoriales según Palmer (2011) y Garrido (2008) quienes sostienen que: “cuando la interacción es significativa, no tiene interés en calcular ni interpretar, los efectos principales (medias marginales). En este caso el siguiente paso del investigador será explorar la interacción significativa. Cuando la interacción es no significativa, entonces tiene interés calcular e interpretar los efectos principales”.

4.1. Porcentaje de emergencia.

En las tablas 35, 36 y 37 de anexos, se presentan los ANOVAS correspondientes para evaluar el porcentaje de emergencia, donde observamos que no existen diferencias significativas para cultivares (p>0.05), en ninguna de las evaluaciones.

En la tabla 1 y gráfico 1, al realizar el test de comparaciones múltiples de Duncan, observamos que, en las tres evaluaciones, el mejor cultivar es SLP4, seguido de SCG25, siendo el de menor porcentaje de emergencia el cultivar Yunguyo.

<table>
<thead>
<tr>
<th>Tabla 1: Porcentaje de emergencia, para el factor culturales para la adaptabilidad de tres culturales de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tarwi</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>SLP4</td>
</tr>
<tr>
<td>SCG25</td>
</tr>
<tr>
<td>Yunguyo</td>
</tr>
</tbody>
</table>

Las letras iguales, indican que no hay diferencia estadística significativa a nivel de Duncan α =0.05
El coeficiente de variación es de 30%, 20.6% y 19.1%, que está dentro de lo aceptable e indica el grado de precisión que ha alcanzado el experimento.

Al efectuar el test de comparaciones múltiples de Duncan (0.05) los resultados ratifican que, para evaluaciones de 10, 12 y 14 dds no se detectaron diferencias estadísticas entre cultivares, es decir el comportamiento de días a la emergencia de los tres cultivares son semejantes. Al respecto la FAO (1995) nos dice que el elevado contenido de grasa en las semillas reduce los tiempos de germinación; las pérdidas pueden alcanzar entre 20 y 25 % anuales por lo que se requiere la continua regeneración del material.

Ascon (2001), menciona que las semillas almacenan durante el proceso embriogénico sustancias de reserva (proteínas, lípidos y carbohidratos) en los cotiledones y en el endospermo y tienen la misión de alimentar a la nueva planta (germinación) hasta que se comporte como un organismo fotosintetizador (autotrófico) en la emergencia de la planta. La emergencia está condicionada a deferentes factores como: temperatura, humedad, composición del sustrato suelo, permeabilidad de la cubierta de la semilla.
Al respecto de los días de la emergencia del tarwi Cáceres (1999), en su investigación que se realizó en Majes-Arequipa cuyo objetivo fue evaluar la respuesta del tarwi a cuatro niveles de fertilización fosfórica en los cultivares de tarwi Plomo y Blanco y determinar el rendimiento de grano hallando emergencia al 96 % a los 6 dds sin diferencia estadística para cultivares; comparando los resultados con la presente investigación al realizar la tercera evaluación a los 14 dds, se observó una emergencia del 81.5% en el mejor comportamiento del cultivar SLP, completándose la emergencia al 100% a los 16 dds manifestando comportamiento tardío en relación a lo evaluado por Cáceres. En la investigación realizada por Flores (2018) en el altiplano Boliviano, nos menciona que la dormancia de las semillas de *Lupinus* tiene relación directa con la impermeabilidad de la testa de la semilla por su alto contenido de fibra. A mayor grosor de la testa menor es el grado de imbibición en la germinación de la semilla; recomendando la escurifación de la semilla por método manual o mecánico logrando acelerar la germinación de un 60 a 86%.

Como podemos observar los tratamientos en base al cultivar SLP4 son los que presentan el mayor porcentaje de emergencia en las tres evaluaciones; siendo este cultivar “Precoz”. La razón por la que la mayoría de semillas han emergido en forma homogénea pasado los 14 dds, se debe a las condiciones apropiadas de temperatura y humedad del campo de cultivo. Así mismo al cuidado preventivo que se le otorgó a la semilla antes de la siembra al ser tratada con un fungicida para evitar la incidencia de hongos radiculares.

Según Caicedo y Peralta, (2001), la emergencia del tarwi ocurre a los 12 dds resultado semejante al hallado en la presente investigación; cabe mencionar la cualidad innata del tarwi de hacer frente al ataque de plagas y enfermedades al contener alto % de alcaloides lo que le permiten una ventaja en esta primera etapa de emergencia, por la presencia de plantas sanas y vigorosas. Esto se corrabora con lo afirmado por Gross (1982), que señala que el cultivar
plomo como aquel que por su contenido de alcaloides se hace más fuerte al ataque de plagas y enfermedades.

4.2. Altura de planta.

En las tablas 38, 39, 40 y 41 de anexos, se presentan los ANOVAS correspondientes para evaluar la altura de planta, donde observamos que existen diferencias significativas para cultivares de tarwi a los 30, 120 y 210 dds (p<0.01).

Para abono orgánico a los 60, 120 y 210 dds se presentan diferencias altamente significativas (p<0.01). A los 60,120 y 210 dds existen diferencias altamente significativas (p<0.01) para la interacción tarwi*abono orgánico.

En la tabla 2 y gráfico 2, al realizar el test de comparaciones múltiples de Duncan observamos que no existe diferencias significativas para cultivares; en 3 de las 4 evaluaciones, el mejor cultivar es Yunguyo, obtuvo el mayor tamaño de planta de tarwi que para evaluaciones realizadas a 210 dds logró un valor de 55.08 cm seguido de SLP4 con un valor de 54.99 cm, siendo el de menor altura el cultivar SCG25 con 53.07 cm.

Tabla 2: Altura de planta por efecto de factor cultivares de tarwi, para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019.

<table>
<thead>
<tr>
<th>Tarwi</th>
<th>EVALUACIONES DDS</th>
<th>30</th>
<th>60</th>
<th>120</th>
<th>210</th>
<th>Medias Duncan</th>
<th>Medias Duncan</th>
<th>Medias Duncan</th>
<th>Medias Duncan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yunguyo</td>
<td></td>
<td>9.60</td>
<td>A</td>
<td>27.59</td>
<td>A</td>
<td>37.50</td>
<td>A</td>
<td>55.08</td>
<td>A</td>
</tr>
<tr>
<td>SLP4</td>
<td></td>
<td>9.37</td>
<td>A</td>
<td>27.67</td>
<td>A</td>
<td>35.28</td>
<td>B</td>
<td>54.99</td>
<td>A</td>
</tr>
<tr>
<td>SCG25</td>
<td></td>
<td>8.88</td>
<td>B</td>
<td>26.32</td>
<td>A</td>
<td>33.98</td>
<td>B</td>
<td>53.07</td>
<td>A</td>
</tr>
</tbody>
</table>

Las letras iguales, indican que no hay diferencia estadística significativa a nivel de Duncan α =0.05
El cultivar Yunguyo es el que presenta mejor altura en todas las evaluaciones caracterizando la precocidad; seguido de SLP4 y SCG25. Y esto viene siendo corroborado por Huisa (2018), en su trabajo experimental realizado en la evaluación de 14 accesiones en el ensayo nacional de tarwi en CIP-Camacani en Puno, donde indica que en relación a la altura de planta las accesiones Puno 11 y Yunguyo tuvieron la mejor altura de planta con 157,54 y 154,4 cm respectivamente y la menor altura fue para SCG-22 con 136,6 cm. La diferencia de altura en los tratamientos en estudio, puede deberse a efectos de adaptación al medio ambiente y a fuentes de abonamiento.

En los primeros 30 dds el crecimiento es lento en los tres cultivares, acelerándose a partir de los 60 días, en donde alcanza mayor altura el cultivar Yunguyo imponiéndose sobre los demás, esta etapa está influenciada directamente con la aplicación de enmiendas orgánicas (Guano de isla, Humus de Lombriz y Bocashi) a cada uno de los tratamientos e interviene significativamente para lograr una mayor altura de planta.
El desarrollo vegetativo del tarwi presenta dos etapas bien marcadas; la primera tiene que ver con el aparecimiento de las hojas verdaderas hasta el desarrollo de hojas 5 foliolos. La segunda desde el aparecimiento de hojas con mayor número de foliolos hasta la presencia del botón floral en el tallo central del tarwi el cual coincide con el desarrollo de ramas secundarias aproximadamente a los 60 dds.

En la tabla 3 y gráfico 3, al realizar el test de comparaciones múltiples de Duncan, del factor sustrato para la variable altura de planta observamos que no existe diferencia estadística significativa entre abonos orgánicos en la primera evaluación (30 dds); a partir de la evaluación realizada a los 60, 120 y 210 dds si existe diferencia estadística, predominando mayor altura de planta con el abono orgánico guano de isla (1250 kg ha\(^{-1}\)) con un valor de 61,89cm, seguido de Bocashi (12000 kg ha\(^{-1}\)) con 57,72 cm; el Humus de lombriz (6000 kg ha\(^{-1}\)) con 49,54cm y el testigo (abono de fondo Vacuno,5 t ha\(^{-1}\)) con 48,37 cm es el que presenta la menor altura de planta.

Tabla 3: Altura de planta por efecto de factor abono orgánico, para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019.

<table>
<thead>
<tr>
<th>Abono orgánico</th>
<th>30</th>
<th>60</th>
<th>120</th>
<th>210</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Medias Duncan</td>
<td>Medias Duncan</td>
<td>Medias Duncan</td>
<td>Medias Duncan</td>
</tr>
<tr>
<td>Guano de Isla</td>
<td>9.53</td>
<td>A</td>
<td>29.89</td>
<td>A</td>
</tr>
<tr>
<td>Vacuno</td>
<td>9.21</td>
<td>AB</td>
<td>26.76</td>
<td>B</td>
</tr>
<tr>
<td>Humus</td>
<td>8.98</td>
<td>B</td>
<td>26.50</td>
<td>B</td>
</tr>
<tr>
<td>Bocashi</td>
<td>9.40</td>
<td>AB</td>
<td>25.62</td>
<td>B</td>
</tr>
</tbody>
</table>

Las letras iguales, indican que no hay diferencia estadística significativa a nivel de Duncan α =0.05

Cáceres (1999), en su trabajo de investigación sobre fertilización fosforada en el cultivo de tarwi, cultivar Plomo y Blanco en la irrigación Majes, concluyó que la altura de planta a los 120 dds alcanzó un promedio de 37,70 cm y 36.91 cm respectivamente, datos que corroboran lo hallado en la investigación donde se halló la mayor altura de planta (39,27 cm)
con el guano de isla, dada la riqueza nutritiva de dicho abono con un contenido de hasta 14% de nitrógeno, 12% de fósforo y 3.0% de potasio, favoreciendo el crecimiento y desarrollo de mayor área foliar; fortaleciendo la estructura y desarrollo integral de la planta de tarwi.

Gráfico 3: Altura de planta por efecto de factor sustratos, para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019.

En este experimento, se han presentado alturas de planta diferentes para cada cultivar los cuales han sido influenciados por las diferentes fuentes de abonamiento a la cosecha (210 dds), destacando el Guano de isla (61,89cm), seguido de Bocashi (57,72cm), humus de lombriz(49,54cm) y por último el testigo estiércol de vacuno(48,37cm). Las condiciones para alcanzar una mejor altura, fueron afectadas por la presencia de enfermedades radiculares en su primera etapa vegetativa. Otra razón sería la adaptación de los cultivares al medio ambiente.

Al respecto el CEDEP (2011), menciona sobre la fertilización: El cultivo de Tarwi por ser una leguminosa generalmente no necesita la fertilización con nitrógeno, debido a que el cultivo fija el nitrógeno del aire. Es recomendable el uso de abonos orgánicos como el guano de las islas, guano de corral, compost, humus o abonos orgánicos líquidos. Los abonos orgánicos suministran nutrientes inorgánicos (nitrógeno, fósforo y potasio y micro elementos)
y nutrientes orgánicos (hongos, bacterias, etc.) que ayudan en la nutrición y sanidad de las plantas.

Con la finalidad de estimular el crecimiento de plantas y lograr un mayor rendimiento de grano, en cada uno de los tratamientos, se hizo la aspersión de un abono foliar “Fish mares” a una concentración de 500 ml/ 200L de agua; rico en aminoácidos, vitaminas, macro y micro nutrientes, cuya función es la activación del sistema radicular y por consecuencia lograr un mayor crecimiento y desarrollo de área foliar.

En la tabla 4 y gráfico 4 al realizar el test de comparaciones múltiples de Duncan, del factor interacción tarwi*abono orgánico, observamos que existen diferencias altamente significativas para las cuatro evaluaciones la interacción Yunguyo*Guano de isla obtuvo el mayor tamaño de planta de tarwi a los 210 dds logro 65.10 cm, seguido se SLP-4 * Guano de isla con un valor de 63.40 cm, siendo el de menor altura la interacción SCG-25*vacuno (testigo) con 44.50 cm.

Tabla 4: Altura de planta por efecto de factor interacción (tarwi*abono orgánico), para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019.

<table>
<thead>
<tr>
<th>Tarwi</th>
<th>Abono orgánico</th>
<th>30</th>
<th>60</th>
<th>120</th>
<th>210</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLP4</td>
<td>Guano de Isla</td>
<td>9.60 AB</td>
<td>29.90 A</td>
<td>38.23 BC</td>
<td>63.40 A</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>Guano de Isla</td>
<td>9.90 A</td>
<td>30.70 A</td>
<td>41.53 A</td>
<td>65.10 A</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>Bocashi</td>
<td>9.57 AB</td>
<td>24.53 CD</td>
<td>33.40 DE</td>
<td>61.10 AB</td>
</tr>
<tr>
<td>SCG25</td>
<td>Bocashi</td>
<td>9.20 AB</td>
<td>24.77 CD</td>
<td>31.53 E</td>
<td>58.50 B</td>
</tr>
<tr>
<td>SCG25</td>
<td>Guano de Isla</td>
<td>9.10 ABC</td>
<td>29.07 AB</td>
<td>38.03 BC</td>
<td>57.17 BC</td>
</tr>
<tr>
<td>SLP4</td>
<td>Bocashi</td>
<td>9.43 AB</td>
<td>27.57 ABC</td>
<td>34.93 DE</td>
<td>53.57 CD</td>
</tr>
<tr>
<td>SLP4</td>
<td>Vacuno</td>
<td>9.60 AB</td>
<td>27.63 ABC</td>
<td>34.53 DE</td>
<td>53.47 CD</td>
</tr>
<tr>
<td>SCG25</td>
<td>Humus</td>
<td>8.83 BC</td>
<td>27.90 ABC</td>
<td>34.83 CDE</td>
<td>52.10 D</td>
</tr>
<tr>
<td>SLP4</td>
<td>Humus</td>
<td>8.83 BC</td>
<td>25.57 BCD</td>
<td>33.40 DE</td>
<td>49.53 DE</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>Humus</td>
<td>9.27 AB</td>
<td>26.03 BCD</td>
<td>35.33 CD</td>
<td>47.00 EF</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>Vacuno</td>
<td>9.67 AB</td>
<td>29.10 AB</td>
<td>39.73 AB</td>
<td>47.13 EF</td>
</tr>
<tr>
<td>SCG25</td>
<td>Vacuno</td>
<td>8.37 C</td>
<td>23.53 D</td>
<td>31.50 E</td>
<td>44.50 F</td>
</tr>
</tbody>
</table>

Las letras iguales, indican que no hay diferencia estadística significativa a nivel de Duncan α =0.05
El coeficiente de variación es de 15.61%, 22.7%, 17.03% y 14.91%, que está dentro de lo aceptable e indica el porcentaje de variación en el experimento. Asimismo, el coeficiente de determinación es de 0.15, 0.15, 0.28 y 0.4 que indica el modelo escogido es el adecuado.

En relación a la altura de planta podemos observar que a medida que transcurre el periodo vegetativo se incrementa la altura esto en interacción con el abonamiento que permite a la planta tener los nutrientes para crecer, lograr un desarrollo vegetativo armonioso superando etapas críticas como son floración, y cuajado de frutos.

Los resultados para altura de planta destacan en cada evaluación la interacción Yunguyo *guano de isla con 65,10 cm, seguido de SLP-4 *guano de isla con 63,40 cm. El guano de isla al ser un abono natural y completo en macro y micro nutrientes (N, P, K, Ca, Mg, S, Fe, Zn, Cu, Mn, B) y flora microbiana; funciona de forma ideal en el crecimiento, desarrollo y producción de los cultivos. Así lo indica la ficha técnica de Guano de Isla emitida por AGRORURAL (2015) donde menciona: El guano de isla es un fertilizante natural y completo, contiene todos los nutrientes que las plantas requieren para su normal crecimiento, desarrollo y producir buenas cosechas. Al abonar con guano de islas, en
promedio el 35% de nitrógeno, fósforo y demás nutrientes presentes, están disponibles para ser absorbidos por las raíces de las plantas en forma inmediata. La forma orgánica continúa en el suelo su mineralización, aportando nutrientes gradualmente durante el crecimiento, desarrollo y producción del cultivo. Aporta flora microbiana y materia orgánica mejorando la actividad microbiológica del suelo. Al unir dos fuentes naturales de abonamiento como son el guano de isla con el estiércol aplicado al fondo del surco han propiciado un incremento acelerado de la altura de las plantas de tarwi las cuales son más vigorosas y resistentes al ataque de plagas y enfermedades lo que se traduce en un mejor rendimiento de grano.

Finalmente la altura de planta fue favorecida por la adición de las diferentes fuentes de abonamiento enriqueciendo el sustrato y propiciando la absorción de nutrientes por las raíces; complementariamente las aplicaciones foliares en base al fermento de pescado y algas marinas “Fish mares” rico en macro y micro nutrientes altamente solubles y asimilables por la planta a nivel radicular y foliar, favorecieron el desarrollo vegetativo de los cultivares.

4.3. Días al inicio de floración.

En las tablas 42 y 43 del anexo, se presentan los anovas correspondientes para evaluar los días al inicio de floración donde, observamos que existen diferencias significativas para sustratos (p<0.05) a los 69 dds en floración del eje central y 102 dds para floración en ramas secundarias. En esta segunda evaluación de la floración en ramas laterales, existen diferencias significativas para la interacción tarwi * abonos orgánicos (p<0.01).

En la tabla 5 y gráfico 5, al realizar el test de comparaciones múltiples de Duncan, observamos que no existen diferencias estadísticas significativas entre cultivares en inflorescencia del eje central, sin embargo, el mejor comportamiento de inicio de floración fue el cultivar SCG-25, seguido de SLP-4 y el de menor dds de floración el cultivar Yunguyo, en cuanto a la floración en ramas laterales si existe diferencia estadística significativa entre los cultivares, predominando el SCG-25.
Tabla 5: Días al inicio de floración por efecto de factor cultivares, para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019.

<table>
<thead>
<tr>
<th>Tarwi</th>
<th>EVALUACIONES DDS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Medias</td>
</tr>
<tr>
<td>SCG25</td>
<td>6.33</td>
</tr>
<tr>
<td>SLP4</td>
<td>5.42</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>4.75</td>
</tr>
</tbody>
</table>

Las letras iguales, indican que no hay diferencia estadística significativa a nivel de Duncan α =0.05

Gráfico 5: Días al inicio de floración por efecto de factor cultivares, para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019.

La presencia precoz del botón floral en el tallo del eje central a los 69 dds, podría atribuirse a causa de adaptación al medio donde son introducidos, la temperatura óptima para lograr un buen crecimiento del tarwi oscila entre 25°C máxima y 7°C la mínima, al respecto Salis (1985), dice que el tarwi alcanza floración entre 80 a 100 dds, por lo que podemos decir que los cultivares en esta investigación presentan floración prematura acortando su periodo vegetativo, temperaturas propicias entre 20°C y 5 °C favorecieron la floración. Así mismo Huisa (2018), al realizar la evaluación agronómica de 14 accesiones en el ensayo nacional de
tarwi en el CIP – Camacani – Puno en la campaña 2017 y 2018 concluyó que los días a la floración oscilan entre 125,8 a 95,3 dds donde Yunguyo presentó floración a los 111,8 dds y SCG-22 a 110,8 dds y de igual forma De la Cruz (2018), en su trabajo de investigación en el Callejón de Huaylas- Ancash sobre la caracterización fenotípica de cultivares de tarwi, obtuvo para el cultivar Yunguyo un promedio de 69 dds para inicio a la floración. En la presente investigación se encontraron resultados similares a De la Cruz, aun así el cultivar que tardo más tiempo en llegar al inicio de floración fue Yunguyo y se debió a la emergencia tardía, mayor número de días a la floración y madurez fisiológica; probablemente ocasionadas por factores ambientales y de adaptación al medio.

La floración lateral en ramas secundarias se desarrolla en promedio de 25 días de la floración del eje central, las cuales se caracterizan por ser inflorescencias de menor tamaño y por consiguiente menor número de flores y frutos.

En la tabla 6 y gráfico 6, al realizar el test de comparaciones múltiples de Duncan, observamos que no existen diferencias significativas para abono orgánico, en la evaluación de floración en el tallo central (69 dds) ni en la floración lateral (102 dds), a pesar el mejor comportamiento fue con el guano de islas con 5.89 dds y en floración lateral el Bocashi con 5.00 dds.

Tabla 6: Días al inicio de floración por efecto de factor abono orgánico, para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019.

<table>
<thead>
<tr>
<th>Abono orgánico</th>
<th>EVALUACIONES DDS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>Medias</td>
</tr>
<tr>
<td>Guano de isla</td>
<td>5.89</td>
</tr>
<tr>
<td>Vacuno</td>
<td>5.56</td>
</tr>
<tr>
<td>Bocashi</td>
<td>5.44</td>
</tr>
<tr>
<td>Humus</td>
<td>5.11</td>
</tr>
</tbody>
</table>

Las letras iguales, indican que no hay diferencia estadística significativa a nivel de Duncan α =0.05
Sobre los resultados encontrados en días a la floración de tarwi por efecto de incorporación de enmiendas orgánicas en base a guano de isla (1,250 kg ha⁻¹) y bocashi (12,000 kg ha⁻¹) podría deberse a su composición nutricional la que ejerce una influencia positiva en la precocidad de la floración.

El guano de isla contiene alto % de NPK, Ca, Mg, S y flora microbiana (hongos y bacterias benéficas) y vemos que ha logrado mejorar las propiedades físico-químicas y biológicas del suelo, las que han nutrido a la planta logrando un buen desarrollo y presencia de mayor % de floración. Esto es corroborado en la ficha técnica de Guano de Isla (MINAGRI, 2015), dice al abonar con Guano de las Islas, en promedio el 35% de nitrógeno, fósforo y demás nutrientes presentes en el guano, están disponibles para ser absorbidos por las raíces de las plantas en forma inmediata. La forma orgánica continúa en el suelo su mineralización, aportando nutrientes gradualmente durante el crecimiento, desarrollo y producción del cultivo. El Fósforo interviene en el desarrollo de la planta acumulándose en los tejidos meristemáticos, en el brotamiento de la planta, en la formación de yemas, en la floración y fructificación y en la formación de semillas, etc.
El Bocashi es un abono orgánico que se obtiene a través de un proceso de fermentación aeróbica de uso inmediato, suministra micronutrientes en forma soluble y en un ambiente de pH biológicamente favorable para la absorción radicular favoreciendo el crecimiento y desarrollo de las plantas y presencia de estructura floral.

En la tabla 7 y gráfico 7, al realizar el test de comparaciones múltiples de Duncan, para el factor interacción cultivar*abono orgánico observamos que existen diferencias estadísticas; en la primera evaluación (eje central), el mayor inicio de floración lo tiene la interacción SCG-25*Guano de isla (7.00), SCG-25*Humus (6.67) y SCG-25*Bocashi (6.33). A los 102 dds floración lateral existen diferencias estadísticas, la mejor interacción registrada fue Yunguyo*Bocashi con 7.33 dds, SCG-25*Guano de isla con 6.67 dds SCG-25*Humus con 6.33 dds.

Tabla 7: Días al inicio de floración por efecto de factor interacción (tarwi*abono orgánico), para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019.

<table>
<thead>
<tr>
<th>Tarwi</th>
<th>Abono orgánico</th>
<th>Medias</th>
<th>Duncan</th>
<th>Medias</th>
<th>Duncan</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCG25</td>
<td>Bocashi</td>
<td>6.33</td>
<td>A</td>
<td>6.00</td>
<td>A</td>
</tr>
<tr>
<td>SCG25</td>
<td>Guano de isla</td>
<td>7.00</td>
<td>A</td>
<td>6.67</td>
<td>A</td>
</tr>
<tr>
<td>SCG25</td>
<td>Humus</td>
<td>6.67</td>
<td>A</td>
<td>6.33</td>
<td>A</td>
</tr>
<tr>
<td>SLP</td>
<td>Guano de isla</td>
<td>6.00</td>
<td>AB</td>
<td>6.00</td>
<td>A</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>Bocashi</td>
<td>5.33</td>
<td>AB</td>
<td>7.33</td>
<td>A</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>Vacuno</td>
<td>5.33</td>
<td>AB</td>
<td>6.00</td>
<td>A</td>
</tr>
<tr>
<td>SLP</td>
<td>Humus</td>
<td>5.00</td>
<td>AB</td>
<td>4.00</td>
<td>B</td>
</tr>
<tr>
<td>SLP</td>
<td>Vacuno</td>
<td>6.00</td>
<td>AB</td>
<td>4.00</td>
<td>B</td>
</tr>
<tr>
<td>SCG25</td>
<td>Vacuno</td>
<td>5.33</td>
<td>AB</td>
<td>2.33</td>
<td>C</td>
</tr>
<tr>
<td>SLP</td>
<td>Bocashi</td>
<td>4.67</td>
<td>AB</td>
<td>1.67</td>
<td>C</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>Guano de isla</td>
<td>4.67</td>
<td>AB</td>
<td>1.67</td>
<td>C</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>Humus</td>
<td>3.67</td>
<td>B</td>
<td>2.00</td>
<td>C</td>
</tr>
</tbody>
</table>

Las letras iguales, indican que no hay diferencia estadística significativa a nivel de Duncan α =0.05

67
Gráfico 7: Días al inicio de floración por efecto de factor interacción (tarwi*abono orgánico), para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019.

El coeficiente de variación es de 22.99% y 20.56%, que está dentro de lo aceptable e indica el porcentaje de variación en el experimento. Asimismo, el coeficiente de determinación es de 0.5 y 0.89 que indica que el modelo escogido, es el adecuado.

Ascon (2001), nos dice que la floración en las plantas es un fenómeno por el cual la yema floral se desarrolla originando la flor y esto es cuando la planta ha alcanzado la madurez en su ciclo de vida. En la flor se encuentran los órganos masculinos y femeninos de la planta en ella se lleva a cabo la polinización y la formación de semillas y frutos. Este proceso está bajo control genético y ambiental influenciado por factores externos: Luz, temperatura, riego y la disponibilidad de nutrientes del suelo.

Al respecto la aplicación de enmiendas orgánicas en base a Guano de Isla y Bocashi en el experimento ha propiciado el desarrollo de plantas más vigorosas, con maduración más temprana, presentando precocidad en la floración. Esta característica está relacionada con la nutrición de la planta y la riqueza de las enmiendas orgánicas utilizadas. El nitrógeno, estimula el crecimiento de la planta; El fosforo ayuda a un rápido desarrollo de la raíz, fortalece tallos y tejidos, favorece la floración y la formación de las semillas y refuerza la
resistencia contra plagas y enfermedades. El potasio desarrolla plantas con tallos más fuertes, estimula la formación de frutos y semillas y combatir enfermedades.

Salis (1985), describe al tarwi como una leguminosa de amplia adaptabilidad y dice que acelera su crecimiento a partir de los 30 días hasta el momento de floración, durante este periodo ocurre la ramificación y la formación de racimos. El eje central madura 1 a 2 meses antes de las ramas laterales. En la presente investigación los tres cultivares presentaron floración prematura acortando su periodo vegetativo, por la disposición de resultados podemos deducir la capacidad de adaptación presentada por el cultivar SCG-25 combinado con las diferentes enmiendas orgánicas en base a Guano de Isla, Humus de Lombriz, Bocashi logrando los mejores resultados para el inicio de floración lo que repercute posteriormente en el rendimiento de grano seco en los diferentes cultivares.

4.4. Días al inicio de la formación de vainas.

En las tablas 44, 45 y de anexos, se presentan los anovas correspondientes para evaluar la variable formación de vainas, donde observamos que existen diferencias altamente significativas para el factor cultivares de tarwi a los 82 dds para vainas del eje central y 131 dds para vainas en las ramas laterales (p<0.01); en la evaluación a los 131 dds existen diferencias altamente significativas para sustratos (p<0.01).

Para la interacción tarwi*abonos orgánicos, existen diferencias significativas a los 82dds (p<0.05) para formación de vainas en el tallo central y 131 dds, es altamente significativa para formación de vainas en rama lateral (p<0.01).

En la tabla 8 y gráfico 8, al realizar el test de comparaciones múltiples de Duncan, observamos que existe diferencia estadística significativa, en la evaluación de formación de vainas en el eje central, el mejor cultivar es SLP-4 (2.00) a los 82 dds, para formación de vainas en floración de segundo orden en las ramas laterales destaca el cultivar SCG-25 (5.83) a los 131 dds.
Tabla 8: Días al inicio de formación de vainas por efecto de factor cultivares, para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019.

<table>
<thead>
<tr>
<th></th>
<th>EVALUACIONES</th>
<th>EJE CENTRAL</th>
<th>RAMA LATERAL</th>
<th>82 dds</th>
<th>131 dds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tarwi</td>
<td>Medias</td>
<td>Duncan</td>
<td>Medias</td>
<td>Duncan</td>
<td></td>
</tr>
<tr>
<td>SLP4</td>
<td>2.00</td>
<td>A</td>
<td>2.33</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Yunguyo</td>
<td>0.50</td>
<td>B</td>
<td>3.92</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>SCG25</td>
<td>0.42</td>
<td>B</td>
<td>5.83</td>
<td>A</td>
<td></td>
</tr>
</tbody>
</table>

Las letras iguales indican que no hay diferencia estadística significativa a nivel de Duncan $\alpha =0.05$.

Gráfico 8: Días al inicio de formación de vainas por efecto de factor cultivares, para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019.

Esta fase fenológica se caracteriza porque en la inflorescencia del tallo central empiezan a aparecer las primeras legumbres en forma de uña de gato empezando de la base de la inflorescencia hacia el ápice. El cuajado de frutos por vaina se produce a los 23 ddf fue en promedio antes de los 100 días para los tres cultivares. El cultivar que alcanzó más temprano la formación de legumbres fue SLP-4 con una media de 2.0 para cuajado de vainas en inflorescencias del tallo central. Al respecto Tapia (2007) menciona las flores en un 50% a 70% no llegan a formar frutos, especialmente en ramas secundarias y terciarias debido a la abscisión floral.
INTAGRI (2019), nos dice que existen factores que afectan el amarre o cuajado de frutos estos son la interacción entre la fisiología del cultivo (viabilidad del polen, velocidad del crecimiento del tubo polínico y crecimiento del fruto); las condiciones climáticas (temperatura, viento, lluvia) y factores endógenos como la cantidad de reservas nutricionales y el contenido de hormonas en la planta afecta el cuajado de frutos. A medida que el fruto se desarrolla comienzan a aparecer fenómenos de competencia entre frutos y las partes vegetativas por los fotoasimilados y esta acción induce la caída de flores y frutos.

Cuando las condiciones no son óptimas se produce la caída o abscisión de flores y frutos no cuajados; sin embargo este es un mecanismo natural de las plantas que le permite seleccionar las mejores flores y frutos reduciendo el riesgo de perder frutos por factores fitosanitarios y ambientales.

En la tabla 9 y gráfico 9, al realizar el test de comparaciones múltiples de Duncan, observamos que los 4 abonos orgánicos, tienen un similar comportamiento de la formación de vainas en el eje central a los 82 dds de evaluación y los 131 dds de evaluación sobresalen el guano de isla y el Bocashi.

Tabla 9: Días al inicio de formación de vainas por efecto de factor abonos orgánicos, para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019.

<table>
<thead>
<tr>
<th>Abonos orgánicos</th>
<th>EJE CENTRAL</th>
<th>RAMA LATERAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>82 dds</td>
<td>131 dds</td>
</tr>
<tr>
<td>Humus</td>
<td>1.11</td>
<td>A</td>
</tr>
<tr>
<td>Guano de isla</td>
<td>1.11</td>
<td>A</td>
</tr>
<tr>
<td>Bocashi</td>
<td>0.89</td>
<td>A</td>
</tr>
<tr>
<td>Vacuno</td>
<td>0.78</td>
<td>A</td>
</tr>
</tbody>
</table>

Las letras iguales, indican que no hay diferencia estadística significativa a nivel de Duncan α =0.05

71
El factor abono orgánico manifiesta homogeneidad en el comportamiento para la formación de vainas en el eje central; siendo diferente para la formación de frutos en inflorescencias laterales donde destaca Guano de Isla y Bocashi. La materia orgánica y los componentes nutricionales presentes en estos abonos naturales como el fosforo, potasio, calcio y magnesio unido a condiciones adecuadas de humedad fortalecen el cuajado de frutos, estimulando el desarrollo de la semilla, favoreciendo la formación de proteínas, translocación de azucares, crecimiento y llenado de frutos.

En la tabla 10 y gráfico 10, al realizar el test de comparaciones múltiples de Duncan, observamos que, en la primera evaluación existe diferencia estadística significativa, en el inicio de formación de vainas, predominando la interacción SLP-4*Guano de isla, seguida de SLP-4*Bocashi.

En la segunda evaluación, se observa que la formación de vainas, que existe diferencia estadística significativa, predominando la interacción SCG-25*Bocashi seguida de SCG-25*humus.
Tabla 10: Días al inicio de formación de vainas por efecto de interacción de factores (tarwi*abono orgánico), para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019.

<table>
<thead>
<tr>
<th>Tarwi</th>
<th>Abono orgánico</th>
<th>EJE CENTRAL</th>
<th>RAMA LATERAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Medias</td>
<td>Medias</td>
</tr>
<tr>
<td>SCG25</td>
<td>Bocashi</td>
<td>0.33</td>
<td>CD</td>
</tr>
<tr>
<td>SCG25</td>
<td>Humus</td>
<td>0.33</td>
<td>CD</td>
</tr>
<tr>
<td>SCG25</td>
<td>Guano de isla</td>
<td>0.67</td>
<td>CD</td>
</tr>
<tr>
<td>SLP4</td>
<td>Guano de isla</td>
<td>2.67</td>
<td>A</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>Bocashi</td>
<td>0.33</td>
<td>CD</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>Vacuno</td>
<td>0.33</td>
<td>CD</td>
</tr>
<tr>
<td>SLP4</td>
<td>Vacuno</td>
<td>1.67</td>
<td>B</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>Guano de isla</td>
<td>0.00</td>
<td>D</td>
</tr>
<tr>
<td>SCG25</td>
<td>Vacuno</td>
<td>0.33</td>
<td>CD</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>Humus</td>
<td>1.33</td>
<td>BC</td>
</tr>
<tr>
<td>SLP4</td>
<td>Bocashi</td>
<td>2.00</td>
<td>AB</td>
</tr>
<tr>
<td>SLP4</td>
<td>Humus</td>
<td>1.67</td>
<td>B</td>
</tr>
</tbody>
</table>

Las letras iguales indican que no hay diferencia estadística significativa a nivel de Duncan α = 0.05.

Gráfico 10: Días al inicio de formación de vainas por efecto de interacción de factores (tarwi*abono orgánico), para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019.
El coeficiente de variación es de 54.94% y 17.11%, que está dentro de lo aceptable e indica el porcentaje de variación en el experimento. Asimismo, el coeficiente de determinación es de 0.8 y 0.57 que indica que el modelo escogido, es adecuado.

En el gráfico 10, se pueden apreciar los valores de días al inicio de formación de vainas logradas por cada combinación, donde la adición de enmiendas orgánicas en base a humus de lombriz (6000 kg ha\(^{-1}\)) y bocashi (12000 kg ha\(^{-1}\)) ha propiciado la precocidad en la formación de vainas en los cultivares SLP-4 y SCG-25.

Respecto a la formación de vainas del tarwi Cáceres (1999), en su investigación realizada en Majes evaluando el comportamiento de la fertilización fosfórica de los cultívares Plomo y Blanco de tarwi en relación al cuajado de frutos por vaina se logró en promedio a los 100 dds refiriendo que para el cultivar Plomo fue de 80,21 dds y para el Blanco 85,42 dds; comparado con la obtenida en la presente investigación manifiesta comportamiento similares ya que inicio la formación de vainas a los 82 dds, debido a la precocidad mostrada por los cultívares a la floración. El abonamiento natural constituye un almacén de nutrientes especialmente de nitrógeno, fosforo, azufre y micronutrientes y los va liberando lentamente, facilitando el aprovechamiento por las plantas. De igual manera la formación de vainas se vio favorecida por la aplicación del biofermento Fhis Mares por la carga microbiana y nutricional fortaleciendo a las plantas, incrementando la formación de brotes y flores sanas y vigorosas, asegurando el cuajado y mayor obtención de frutos de calidad.

4.5. Días al inicio de la madurez fisiológica.

En las tablas 46 y 47 de anexos, se presentan los anovas correspondientes para evaluar el inicio de madurez fisiológica, donde observamos que existen diferencias significativas para abonos orgánicos (p<0.05), sólo a los 166 dds de evaluación. Asimismo, hay diferencias altamente significativas para cultívares (p<0.01) sólo en la primera evaluación.
Para la interacción Tarwi*abono orgánico, existen diferencias altamente significativas para las 2 evaluaciones (p<0.01).

En la tabla 11 y gráfico 11, para cultivares de tarwi, al realizar el test de comparaciones múltiples de Duncan, observamos que, en la primera evaluación el SCG-25 es el que presenta la mayor madurez fisiológica. Para la segunda evaluación, la mayor madurez fisiológica es homogénea entre los tres cultivares.

Tabla 11: Días al inicio de la madurez fisiológica por efecto de factor cultivares, para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019.

<table>
<thead>
<tr>
<th>Tarwi</th>
<th>EVALUACIONES DDS</th>
<th>166</th>
<th>190</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Medias Duncan Medias Duncan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCG25</td>
<td>7.00 A 9.25 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yunguyo</td>
<td>6.50 B 8.75 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SLP4</td>
<td>6.42 B 8.83 A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Las letras iguales, indican que no hay diferencia estadística significativa a nivel de Duncan α =0.05

Gráfico 11: Días al inicio de la madurez fisiológica por efecto de factor cultivares, para la adaptabilidad de 3 cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019.
Esta fase fenológica se evaluó cuando las legumbres presentan una coloración pajiza y conforme van madurando va perdiendo su pubescencia y se siente un ruido como a cascabel, tienen consistencia dura lo que facilita la cosecha.

Al respecto Lescano, citado por Cáceres (1999), menciona en los cultivares Blanco y Plomo el cuajado de grano empieza con la presencia de grano lechoso a los 15 ddf posterior la formación de vainas, que se va volviendo pastoso y duro a medida que alcanza la madurez fisiológica, teniendo el grano totalmente cuajado a los 108 dds. En este trabajo experimental la madurez fisiológica se logró en promedio de 180 dds con un coeficiente de variación de 6.64, el cultivar más precoz fue SCG-25 con una media de 9.25; el más tardío fue el cultivar SLP-4 con una media de 8.83; En los cultivares precoces SCG-25 y Yunguyo manifestaron cualidades genotípicas para sobrevivir a condiciones adversas externas como nutrición, ataque de enfermedades, ocurriendo lo contrario con el cultivar tardío SLP-4 que en parecidas condiciones por sus características genéticas demoran en madurar y están más expuestas al ataque de plagas y enfermedades, retardando la madurez fisiológica de las legumbres del tarwi.

Para la FAO (2010), las plantas de tarwi pueden ser arrancadas después de alcanzar la madurez fisiológica, pero se recomienda que la planta este mayor tiempo en el campo para que se produzca el secado natural del grano a través de una pérdida gradual de la humedad; si la cosecha se anticipa cuando el contenido de humedad es alto aparecerá granos chupados, disminuyendo la calidad y producirá perdida en los rendimientos.

En la tabla 12 y gráfico 12, para abonos orgánicos, al realizar el test de comparaciones múltiples de Duncan, observamos que en la primera evaluación los abonos orgánicos guano de isla y Bocashi, son los presentan los mayores índices de madurez fisiológica; para la segunda evaluación el guano de islas, los tres abonos se comportan en forma homogénea, que difieren del testigo (estiércol de vacuno).
Tabla 12: Días al inicio de la madurez fisiológica por efecto de factor abono orgánico, para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019.

<table>
<thead>
<tr>
<th>Abono orgánico</th>
<th>EVALUACIONES DDS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Medias</td>
</tr>
<tr>
<td>Guano de isla</td>
<td>6.89</td>
</tr>
<tr>
<td>Bocashi</td>
<td>6.89</td>
</tr>
<tr>
<td>Humus</td>
<td>6.56</td>
</tr>
<tr>
<td>Vacuno</td>
<td>6.22</td>
</tr>
</tbody>
</table>

Las letras iguales, indican que no hay diferencia estadística significativa a nivel de Duncan $\alpha =0.05$

Gráfico 12. Días al inicio de la madurez fisiológica por efecto de factor abono orgánico, para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019

El estado de madurez fisiológica se alcanza cuando los granos han logrado su máxima acumulación de materia seca, asegurándose con ello la obtención del máximo rendimiento de grano; esta fase fisiológica está directamente influenciada por la nutrición de macro y micronutrientes aportados por los abonos orgánicos en estudio destacando el Guano de Isla y Bocashi y ha propiciado la fecundación de las plantas; crecimiento, llenado de granos por la acumulación de fotoasimilados ricos en proteínas, carbohidratos, lípidos, vitaminas, minerales hasta alcanzar el estado de madurez fisiológica cuando el grano alcanza humedad del 52% y los granos adquieren el color característico de su cultivar. Luego pierden en
promedio 3% de humedad cada día alcanzando la madurez de cosecha o trilla cuando presenta de 10 a 14% de humedad (dehiscencia espontánea de semillas).

En la tabla 13 y gráfico 13, para la interacción tarwi*abono orgánico, al realizar el test de comparaciones múltiples de Duncan, observamos que la mayor madurez fisiológica en la primera evaluación el mayor índice de madurez fisiológica los tiene la interacción SCG-25*Bocashi.

Para la segunda evaluación la mejor interacción es SCG-25*Bocashi y SCG-25*Guano de isla, SCG-25*Humus y SLP-4*Guano de isla.

Tabla 13: Días al inicio de la madurez fisiológica por efecto de la interacción de factores (tarwi*abono orgánico), para la adaptabilidad de 3 cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019.

<table>
<thead>
<tr>
<th>Tarwi</th>
<th>Sustratos</th>
<th>EVALUACIONES DDS 166</th>
<th>EVALUACIONES DDS 190</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCG25</td>
<td>Bocashi</td>
<td>8.00 A</td>
<td>10.00 A</td>
</tr>
<tr>
<td>SCG25</td>
<td>Guano de isla</td>
<td>7.33 AB</td>
<td>10.00 A</td>
</tr>
<tr>
<td>SCG25</td>
<td>Humus</td>
<td>7.33 AB</td>
<td>9.67 A</td>
</tr>
<tr>
<td>SLP4</td>
<td>Guano de isla</td>
<td>7.33 AB</td>
<td>10.00 A</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>Vacuno</td>
<td>7.00 BC</td>
<td>9.33 AB</td>
</tr>
<tr>
<td>SLP4</td>
<td>Vacuno</td>
<td>6.33 CD</td>
<td>9.00 ABC</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>Humus</td>
<td>6.33 CD</td>
<td>9.00 ABC</td>
</tr>
<tr>
<td>SLP4</td>
<td>Bocashi</td>
<td>6.00 DE</td>
<td>8.33 BCD</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>Bocashi</td>
<td>6.67 BCD</td>
<td>8.33 BCD</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>Guano de isla</td>
<td>6.00 DE</td>
<td>8.33 BCD</td>
</tr>
<tr>
<td>SLP4</td>
<td>Humus</td>
<td>6.00 DE</td>
<td>8.00 CD</td>
</tr>
<tr>
<td>SCG25</td>
<td>Vacuno</td>
<td>5.33 E</td>
<td>7.33 D</td>
</tr>
</tbody>
</table>

Las letras iguales, indican que no hay diferencia estadística significativa a nivel de Duncan α = 0.05.
Gráfico 13: Días al inicio de la madurez fisiológica por efecto de la interacción de factores (tarwi*abono orgánico), para la adaptabilidad de 3 cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019.

El coeficiente de variación es de 6.64% y 7.52% que está dentro de lo aceptable e indica el porcentaje de variación en el experimento. Asimismo, el coeficiente de determinación es de 0.82 y 0.72 que indica que el modelo escogido es adecuado.

Huissa (2018), en su trabajo experimental “Caracterización morfológica y agronómica de 14 accesiones del proyecto nacional de tarwi del CIP-Camacani-Puno encontró entre otros resultados que para la variable madurez fisiológica a la cosecha, obtuvo días que varían entre 263,7 a 221,3 dds manifestando mayor precocidad las accesiones SCG-22 con 221,3 dds y Yunguyo con 248,8 dds tomando denominaciones como tardías, comparando sus resultado a los hallados para la madurez fisiológica en la presente investigación (190 dds), siendo el tiempo alcanzado menor al experimento anterior, puede ser debido a la adaptabilidad de cada cultivar que propicio la madurez del grano en menor tiempo y a las condiciones nutricionales y medio ambientales presentes como temperatura y humedad.
4.6. Número de vainas por planta.

En la tabla 48 del anexo, se presenta el anova correspondiente para evaluar el número de vainas, donde observamos que existen diferencias altamente significativas para cultivares de tarwi, abono orgánico y para la interacción tarwi*abono orgánico (p<0.01).

En la tabla 14 y gráfico 14, al realizar el test de comparaciones múltiples de Duncan, para cultivares de tarwi, observamos que, los mejores cultivares son SCG-25 y SLP-4, que difieren estadísticamente del cultivar Yunguyo que obtuvo menor número de vainas.

Tabla 14: Número de vainas por planta por efecto de factor cultivares, para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019.

<table>
<thead>
<tr>
<th></th>
<th>Medias</th>
<th>Duncan</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCG25</td>
<td>13.2</td>
<td>A</td>
</tr>
<tr>
<td>SLP4</td>
<td>12.6</td>
<td>A</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>11.79</td>
<td>B</td>
</tr>
</tbody>
</table>

Las letras iguales, indican que no hay diferencia estadística significativa a nivel de Duncan \(\alpha = 0.05 \)

Gráfico 14: Número de vainas por planta por efecto de factor cultivares, para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019.
Al finalizar el periodo vegetativo del cultivo de Tarwi a los 210 dds se procedió a realizar la cosecha y posterior conteo de vainas por planta destacando el cultivar SCG-25; el cual presenta los mejores resultados en floración, precocidad en la formación de vainas y mayor número de vainas por planta superando a los otros cultivares en estudio.

En la tabla 15 y gráfico 15, al realizar el test de comparaciones múltiples de Duncan, observamos que, el mejor abono orgánico es el Guano de isla, difiere estadísticamente de los demás abonos orgánicos; Bocashi, humus y vacuno (testigo).

Tabla 15: Número de vainas por planta por efecto de factor abono orgánico, para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019.

<table>
<thead>
<tr>
<th>Abono orgánico</th>
<th>Médias</th>
<th>Duncan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guano de Isla</td>
<td>17.94</td>
<td>A</td>
</tr>
<tr>
<td>Bocashi</td>
<td>12.98</td>
<td>B</td>
</tr>
<tr>
<td>Humus</td>
<td>10.29</td>
<td>C</td>
</tr>
<tr>
<td>Vacuno</td>
<td>8.91</td>
<td>D</td>
</tr>
</tbody>
</table>

Las letras iguales, indican que no hay diferencia estadística significativa a nivel de Duncan α =0.05

Gráfico 15: Número de vainas por planta por efecto de factor abono orgánico, para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019.
Los componentes nutricionales Nitrógeno 14%, fosforo 12%, potasio 3%; calcio 8%; micronutrientes y flora microbiana presentes en el Guano de Isla lo hacen un fertilizante completo ya que contiene todos los nutrientes que la planta requiere para su crecimiento, desarrollo y producción de cosechas rentables; destacando sobre las otras enmiendas orgánicas en estudio.

En la tabla 16 y gráfico 16, al realizar el test de comparaciones múltiples de Duncan, para la interacción tarwi*abono orgánico, observamos que, el mayor número de vainas tiene la interacción SCG-25*Guano de islas, el cual difiere estadísticamente de los demás tratamientos en estudio.

Tabla 16: Número de vainas por planta por efecto de la interacción de factores (tarwi*abono orgánico), para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas.

Arequipa, 2019.

<table>
<thead>
<tr>
<th>Tarwi</th>
<th>Abono orgánico</th>
<th>Medias</th>
<th>Duncan</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCG25</td>
<td>Guano de Isla</td>
<td>22.63</td>
<td>A</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>Guano de Isla</td>
<td>17.47</td>
<td>B</td>
</tr>
<tr>
<td>SLP4</td>
<td>Humus</td>
<td>15.33</td>
<td>C</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>Bocashi</td>
<td>14.03</td>
<td>D</td>
</tr>
<tr>
<td>SLP4</td>
<td>Guano de Isla</td>
<td>13.73</td>
<td>D</td>
</tr>
<tr>
<td>SCG25</td>
<td>Bocashi</td>
<td>12.83</td>
<td>DE</td>
</tr>
<tr>
<td>SLP4</td>
<td>Bocashi</td>
<td>12.07</td>
<td>E</td>
</tr>
<tr>
<td>SLP4</td>
<td>Vacuno</td>
<td>9.27</td>
<td>F</td>
</tr>
<tr>
<td>SCG25</td>
<td>Vacuno</td>
<td>8.97</td>
<td>F</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>Vacuno</td>
<td>8.5</td>
<td>F</td>
</tr>
<tr>
<td>SCG25</td>
<td>Humus</td>
<td>8.37</td>
<td>FG</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>Humus</td>
<td>7.17</td>
<td>G</td>
</tr>
</tbody>
</table>

Las letras iguales, indican que no hay diferencia estadística significativa a nivel de Duncan α =0.05
El coeficiente de variación de 19.29% está dentro de lo aceptable e indica el porcentaje de variación en el experimento. Asimismo, el coeficiente de determinación de 0.77 indica que el modelo escogido, es adecuado.

Podemos observar que el cultivar SCG-25*guano de isla con un nivel de abonamiento de 1,250 kg ha-1 es superior a todos los demás tratamientos en estudio con una media de 22,63 vainas por planta. Podemos deducir que el cultivar SCG-25 aprovecha mejor el fosforo presente en el Guano de Isla propiciando un mejor desarrollo radicular y masa foliar e interviene en la floración y la formación de legumbres, incrementando el rendimiento de grano por planta a la cosecha.

Cáceres (1999), en su trabajo experimental encontró que para número de vainas por planta para los cuatro niveles de fertilización fosfórica al momento de la cosecha a los 210dds hallo promedios del cultivar Plomo de 5,95 y del cultivar Blanco de 6,40. Los valores para número de vainas por planta son mayores en la investigación que estamos desarrollando SCG-25*GI con 22.63 vainas; Yunguyo*GI con 17.47 vainas; SLP-4*HL con 15.33 vainas por planta. Un factor que limito un mejor cuajado de vainas, pudo ser la presencia de viento.
que se presentó en plena floración, propiciando la caída de flores, repercutiendo en el cuajado y rendimiento de grano, otro factor determinante pudo ser el genético y ambiental que influyeron en el rendimiento final de grano, es decir el número de vainas por planta influye directamente en el rendimiento considerándose una etapa crítica y de cuidado para lograr una mayor rentabilidad del cultivo de tarwi.

Se debe tener especial cuidado de la floración y cuajado de vainas de la inflorescencia del eje central por ser la que produce mayor cantidad de vainas en comparación a las inflorescencias laterales de segundo y tercer orden, que son de menor tamaño.

4.7. **Longitud de vainas por planta.**

En la tabla 49 del anexo, se presenta el anova correspondiente para evaluar la longitud de vaina por planta, donde observamos que existen diferencias significativas para cultivares de tarwi (p<0.05) y para sustratos y la interacción tarwi * abono orgánico diferencias altamente significativas (p<0.01).

En la tabla 17 y gráfico 17, al realizar el test de comparaciones múltiples de Duncan, observamos que el mejor cultivar de tarwi es Yunguyo y SLP-4, difieren estadísticamente del cultivar SCG-25, respecto a la longitud de vainas.

Tabla 17: *Longitud de vainas por planta por efecto de factor cultivar, para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019.*

<table>
<thead>
<tr>
<th>Tarwi</th>
<th>Medias</th>
<th>Duncan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yunguyo</td>
<td>5.23</td>
<td>A</td>
</tr>
<tr>
<td>SLP4</td>
<td>5.22</td>
<td>A</td>
</tr>
<tr>
<td>SCG25</td>
<td>5.06</td>
<td>B</td>
</tr>
</tbody>
</table>

Las letras iguales, indican que no hay diferencia estadística significativa a nivel de Duncan α =0.05
Gráfico 17: Longitud de vainas por planta por efecto de factor cultivar, para la adaptabilidad de tres

En la tabla 18 y gráfico 18, al realizar el test de comparaciones múltiples de Duncan,
observamos que, el mejor abono orgánico es el guano de islas, el cual difiere estadísticamente
de los demás abonos en estudio.

Tabla 18: Longitud de vainas por planta por efecto de factor abono orgánico, para la adaptabilidad de

<table>
<thead>
<tr>
<th>Abono orgánico</th>
<th>Medias</th>
<th>Duncan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guano de Isla</td>
<td>5.43</td>
<td>A</td>
</tr>
<tr>
<td>Bocashi</td>
<td>5.16</td>
<td>B</td>
</tr>
<tr>
<td>Vacuno</td>
<td>5.11</td>
<td>BC</td>
</tr>
<tr>
<td>Humus</td>
<td>4.98</td>
<td>C</td>
</tr>
</tbody>
</table>

Las letras iguales, indican que no hay diferencia estadística significativa a nivel de Duncan $\alpha =0.05$
Gráfico 18: Longitud de vainas por planta por efecto de factor abono orgánico, para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019.

En la tabla 19 y gráfico 19 al realizar el test de comparaciones múltiples de Duncan, para la interacción Tarwi*abono orgánico, observamos que, la mayor longitud de vainas la tiene la interacción Yunguyo*Guano de isla, el cual difiere estadísticamente de los demás tratamientos en estudio.

Tabla 19: Longitud de vainas por planta por efecto de interacción de factores (tarwi*abono orgánico), para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019.

<table>
<thead>
<tr>
<th>Tarwi</th>
<th>Abono orgánico</th>
<th>Medias</th>
<th>Duncan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yunguyo</td>
<td>Guano de Isla</td>
<td>5.88</td>
<td>A</td>
</tr>
<tr>
<td>SLP4</td>
<td>Guano de Isla</td>
<td>5.48</td>
<td>B</td>
</tr>
<tr>
<td>SLP4</td>
<td>Vacuno</td>
<td>5.26</td>
<td>BC</td>
</tr>
<tr>
<td>SLP4</td>
<td>Bocashi</td>
<td>5.19</td>
<td>BCD</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>Bocashi</td>
<td>5.17</td>
<td>CD</td>
</tr>
<tr>
<td>SCG25</td>
<td>Vacuno</td>
<td>5.13</td>
<td>CD</td>
</tr>
<tr>
<td>SCG25</td>
<td>Bocashi</td>
<td>5.11</td>
<td>CD</td>
</tr>
<tr>
<td>SCG25</td>
<td>Humus</td>
<td>5.08</td>
<td>CD</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>Vacuno</td>
<td>4.95</td>
<td>CD</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>Humus</td>
<td>4.93</td>
<td>CD</td>
</tr>
<tr>
<td>SLP4</td>
<td>Humus</td>
<td>4.93</td>
<td>CD</td>
</tr>
<tr>
<td>SCG25</td>
<td>Guano de Isla</td>
<td>4.92</td>
<td>D</td>
</tr>
</tbody>
</table>

Las letras iguales, indican que no hay diferencia estadística significativa a nivel de Duncan $\alpha = 0.05$.
Gráfico 19: Longitud de vainas por planta por efecto de interacción de factores (tarwi*abono orgánico), para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019.

El coeficiente de variación es de 10.87%, que está dentro de lo aceptable e indica el porcentaje de variación en el experimento. Asimismo, el coeficiente de determinación es de 0.24 que indica el modelo.

De la Cruz (2018), evaluando la caracterización fenológica y rendimiento de ecotipos de tarwi en el Callejón de Huaylas, Ancash, encontró que la longitud de vaina para el cultivar Yunguyo fue de 7.3 cm; al respecto, la longitud de vaina, en este trabajo experimental para el cultivar Yunguyo fue menor 5.88 cm comparado al anterior, puede corresponder directamente a un proceso de adaptación a las condiciones del medio lo que influye en el fenotipo del cultivar. A su vez La interacción Yunguyo*Guano de Isla con 5.88 cm destaca en la longitud de vaina, sobre los demás tratamientos esto significa que la presencia de fosforo en esta enmienda orgánica influye en el crecimiento de legumbres y formación de grano.

Según Salis(1985), el cultivar Plomo presenta vainas de 5 a 8 cm y el cultivar Blanco de 5 a 10 cm la longitud alcanzada en este trabajo experimental son similares manifestando una respuesta positiva de los cultivares a la adaptación a la zona.
4.8. Número de granos por vaina.

En la tabla 50 del anexo, se presenta el anova correspondiente para evaluar el número de granos por vaina, donde observamos que existen diferencias altamente significativas para abono orgánico y la interacción tarwi*abono orgánico (p<0.01).

En la tabla 20 y gráfico 20, al realizar el test de comparaciones múltiples de Duncan, observamos que los tres cultivares presentan comportamiento homogéneo respecto al número de granos por vainas.

Tabla 20: Número de granos por vaina por efecto de factor cultivar, para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019.

<table>
<thead>
<tr>
<th></th>
<th>Medias</th>
<th>Duncan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yunguyo</td>
<td>2.39</td>
<td>A</td>
</tr>
<tr>
<td>SLP4</td>
<td>2.35</td>
<td>A</td>
</tr>
<tr>
<td>SCG25</td>
<td>2.36</td>
<td>A</td>
</tr>
</tbody>
</table>

Las letras iguales indican que no hay diferencia estadística significativa a nivel de Duncan $\alpha =0.05$

Gráfico 20: Número de granos por vaina por efecto de factor cultivar, para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019.
Se puede apreciar claramente que no existe diferencia estadística para cultivares al desarrollar un comportamiento homogéneo para número de granos.

En la tabla 21 y gráfico 21, al realizar el test de comparaciones múltiples de Duncan, para número de granos, para abono orgánico observamos que, el mejor es el guano de islas, el cual difiere estadísticamente de los demás abonos en estudio.

Tabla 21: Número de granos por vaina por efecto de factor sustrato, para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019.

<table>
<thead>
<tr>
<th>Abono orgánico</th>
<th>Medias</th>
<th>Duncan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guano de Isla</td>
<td>2.65</td>
<td>A</td>
</tr>
<tr>
<td>Bocashi</td>
<td>2.34</td>
<td>B</td>
</tr>
<tr>
<td>Vacuno</td>
<td>2.33</td>
<td>B</td>
</tr>
<tr>
<td>Humus</td>
<td>2.15</td>
<td>C</td>
</tr>
</tbody>
</table>

Las letras iguales, indican que no hay diferencia estadística significativa a nivel de Duncan $\alpha = 0.05$

Gráfico 21: Número de granos por vaina por efecto de factor sustrato, para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019.

La influencia del guano de isla en la producción de granos por vaina en el tarwi muestra superioridad frente a las demás enmiendas orgánicas con un valor de 2,65 granos por vaina. Un alto contenido de fosforo en este abono orgánico estarían estimulando
positivamente en el desarrollo de plantas más vigorosas lo que se traduce en una mayor producción de grano. Esto estaría corroborado por Primo y Carrasco citado por Cáceres (1999), que nos dicen que el fosforo estimula la formación de granos y semillas actuando como nutriente de la planta y como transportador de energía a través de todo su esqueleto de la planta.

En la tabla 22 y gráfico 22, al realizar el test de comparaciones múltiples de Duncan, para la interacción Tarwi*abono orgánico, observamos que, el mayor número de granos por vaina, lo obtuvo la interacción Yunguyo*Guano de isla, el cual difiere estadísticamente de los demás tratamientos estudiados.

Tabla 22: Número de granos por vaina por efecto de interacción de factores (tarwi*abono orgánico), para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019.

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tarwi</td>
<td>Abono orgánico</td>
<td>Medias</td>
<td>Duncan</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>Guano de Isla</td>
<td>2.94</td>
<td>A</td>
</tr>
<tr>
<td>SLP4</td>
<td>Guano de Isla</td>
<td>2.53</td>
<td>B</td>
</tr>
<tr>
<td>SCG25</td>
<td>Guano de Isla</td>
<td>2.47</td>
<td>BC</td>
</tr>
<tr>
<td>SCG25</td>
<td>Vacuno</td>
<td>2.42</td>
<td>BC</td>
</tr>
<tr>
<td>SLP4</td>
<td>Bocashi</td>
<td>2.39</td>
<td>BC</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>Bocashi</td>
<td>2.32</td>
<td>BC</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>Vacuno</td>
<td>2.32</td>
<td>BC</td>
</tr>
<tr>
<td>SCG25</td>
<td>Bocashi</td>
<td>2.30</td>
<td>BC</td>
</tr>
<tr>
<td>SCG25</td>
<td>Humus</td>
<td>2.26</td>
<td>C</td>
</tr>
<tr>
<td>SLP4</td>
<td>Vacuno</td>
<td>2.25</td>
<td>C</td>
</tr>
<tr>
<td>SLP4</td>
<td>Humus</td>
<td>2.21</td>
<td>CD</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>Humus</td>
<td>1.99</td>
<td>D</td>
</tr>
</tbody>
</table>

Las letras iguales, indican que no hay diferencia estadística significativa a nivel de Duncan $\alpha = 0.05$
El coeficiente de variación es de 19.1%, que está dentro de lo aceptable e indica el porcentaje de variación en el experimento. Asimismo, el coeficiente de determinación es de 0.23 indica el modelo experimental es el adecuado.

De la Cruz (2018), en su trabajo experimental desarrollado en el Callejón de Huaylas encontró para número de granos por vaina 3.63 para el cultivar Yunguyo y Caceres (1999), encontró promedios de 2.50 para cultivares Plomo y Blanco, al comparar dichos resultados con los obtenidos en el experimento existe similitud en el número de granos por vaina Yunguyo con 2.94 granos; SCG-25 con 2.47; SLP-4 con 2.53 granos por vaina. La estructura vegetativa, altura de planta, floración, formación de grano, número de granos por vaina, etc. obedecen a la información genética de cada cultivar, pero su expresión fenológica está determinada por el ambiente (Clima, altitud, nutrición mineral, etc.). En la ficha técnica del tarwi nos dice que el número de granos por vaina para el cultivar blanco va de 5 hasta 10 mientras que para el cultivar plomo va desde 5 a 8 granos por vaina, podemos interpretar que
el bajo rendimiento de grano se debe principalmente al proceso de adaptación a las condiciones medio ambientales del cultivo en esta zona.

4.9. Rendimiento de grano seco en gramos por planta.

En la tabla 51 del anexo, se presenta el anova correspondiente para evaluar el rendimiento de grano seco en gramos por planta, donde observamos que existen diferencias altamente significativas para sustratos y la interacción tarwi*sustratos (p<0.01).

En la tabla 23 y gráfico 23, al realizar el test de comparaciones múltiples de Duncan, observamos que el cultivar de tarwi con el mayor número de granos es Yunguyo, seguido de SLP-4 y SCG-25, siendo los tres de comportamiento homogéneo, no difieren estadísticamente entre ellos.

Tabla 23: Rendimiento de grano seco en gramos por planta por efecto de factor cultivar, para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019.

<table>
<thead>
<tr>
<th>Tarwi</th>
<th>Medias</th>
<th>Duncan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yunguyo</td>
<td>5.57</td>
<td>A</td>
</tr>
<tr>
<td>SLP4</td>
<td>5.45</td>
<td>A</td>
</tr>
<tr>
<td>SCG25</td>
<td>5.42</td>
<td>A</td>
</tr>
</tbody>
</table>

Las letras iguales, indican que no hay diferencia estadística significativa a nivel de Duncan α =0.05

Gráfico 23: Rendimiento de grano seco en gramos por planta por efecto de factor cultivar, para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019.
En la tabla 24 y gráfico 24, al realizar el test de comparaciones múltiples de Duncan, para rendimiento de grano seco en gramos, para abonos orgánicos, observamos que, el mejor abono es el guano de islas, el cual difiere estadísticamente del resto de abonos estudiados

Tabla 24. Rendimiento de grano seco en gramos por planta por efecto de factor principal abono orgánico, para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019.

<table>
<thead>
<tr>
<th>Abono orgánico</th>
<th>Medias</th>
<th>Duncan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guano de Isla</td>
<td>8.22</td>
<td>A</td>
</tr>
<tr>
<td>Bocashi</td>
<td>5.59</td>
<td>B</td>
</tr>
<tr>
<td>Humus</td>
<td>4.34</td>
<td>C</td>
</tr>
<tr>
<td>Vacuno</td>
<td>3.76</td>
<td>D</td>
</tr>
</tbody>
</table>

Las letras iguales, indican que no hay diferencia estadística significativa a nivel de Duncan \(\alpha = 0.05 \)

Gráfico 24: Rendimiento de grano seco en gramos por planta por efecto de factor abono orgánico, para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019.

Para el factor abono orgánico podemos observar que el guano de isla tiene respuesta favorable en el rendimiento de grano seco (gramos/planta) con un valor de 8.22 g sobre las demás enmiendas orgánicas esto debería tener relación directa por el contenido de fosforo en su constitución que tiene influencia en crecimiento y desarrollo de plantas con mayor altura, follaje más vigoroso, mayor desarrollo de inflorescencias, mejor cuajado de vainas y mejor...
desarrollo de grano a la maduración. Al respecto Hall (1980), nos dice que las caídas de hojas y flores características en esta especie disminuyen la obtención de mayor número de vainas por tanto menor cantidad de granos por planta. El tradicional manejo del cultivo de tarwi por el agricultor puede presentar limitaciones, al no adicionar la adecuada necesidad de macro y micronutrientes al suelo que requiere el cultivo, obteniéndose menor arquitectura de planta y volumen de raíces e influye en una baja remoción de nutrientes para el llenado de granos.

En la tabla 25 y gráfico 25, al realizar el test de comparaciones múltiples de Duncan, para la interacción Tarwi*abono orgánico, observamos que, los mayores rendimientos de grano seco en gramos, lo consiguieron la interacción Yunguyo*Guano de isla y SCG-25*guano de isla, difieren estadísticamente del resto de tratamientos estudiados.

Tabla 25. Rendimiento de grano seco en gramos por planta por efecto de interacción de factores (tarwi*abono orgánico), para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019.

<table>
<thead>
<tr>
<th>Tarwi</th>
<th>Abono orgánico</th>
<th>Medias</th>
<th>Duncan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yunguyo</td>
<td>Guano de Isla</td>
<td>8.85</td>
<td>A</td>
</tr>
<tr>
<td>SCG25</td>
<td>Guano de Isla</td>
<td>8.63</td>
<td>A</td>
</tr>
<tr>
<td>SLP4</td>
<td>Guano de Isla</td>
<td>7.17</td>
<td>B</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>Bocashi</td>
<td>6.79</td>
<td>B</td>
</tr>
<tr>
<td>SLP4</td>
<td>Humus</td>
<td>5.74</td>
<td>C</td>
</tr>
<tr>
<td>SLP4</td>
<td>Bocashi</td>
<td>5.01</td>
<td>D</td>
</tr>
<tr>
<td>SCG25</td>
<td>Bocashi</td>
<td>4.99</td>
<td>D</td>
</tr>
<tr>
<td>SCG25</td>
<td>Humus</td>
<td>4.47</td>
<td>DE</td>
</tr>
<tr>
<td>SLP4</td>
<td>Vacuno</td>
<td>3.90</td>
<td>EF</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>Vacuno</td>
<td>3.81</td>
<td>EF</td>
</tr>
<tr>
<td>SCG25</td>
<td>Vacuno</td>
<td>3.57</td>
<td>F</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>Humus</td>
<td>2.82</td>
<td>G</td>
</tr>
</tbody>
</table>

Las letras iguales, indican que no hay diferencia estadística significativa a nivel de Duncan $\alpha = 0.05$
El coeficiente de variación es de 24.51%, que es aceptable e indica el porcentaje de variación en el experimento. Asimismo, el coeficiente de determinación es de 0.68 e indica el modelo experimental es el adecuado.

Cáceres (1999), realizando la evaluación del comportamiento de cultivos Plomo y Blanco encontró que muestran respuesta favorable a la fertilización fosfórica imponiéndose el cultivar Blanco sobre el Plomo logrando rendimientos de grano seco por planta de 28,40 g y 26,58 respectivamente; comparado con esta investigación sobre la adaptación de cultivos los resultados son menores Yunguyo *GI 8,85 g, SCG-25*GI 8,67 g, SLP-4 7,17 g. El rendimiento de grano seco (gramos/planta) está influenciada por la nutrición de la planta y esto se evidencia al observar que para los tres cultivares Yunguyo, SCG-25 y SLP-4 con el abonamiento con guano de isla a un nivel de 1,250 kg ha\(^{-1}\) le han permitido obtener un rendimiento homogéneo en la producción de grano seco/planta, en comparación a las otras enmiendas orgánicas que presentan un rendimiento variable; sin embargo el rendimiento es bajo lo que puede deberse a diferentes factores ajenas al potencial genético de cada cultivar.
sino obedece a razones de fertilidad, medioambientales, susceptibilidad a enfermedades radiculares que limitan un desarrollo homogéneo de grano afectando la calidad fisiológica, disminuyendo la cantidad de fotoasimilados por semilla lo que repercute en un menor rendimiento.

Según los resultados obtenidos podemos deducir que el guano de isla es un abono completo, contiene macro y micronutrientes que la planta necesita para crecer, desarrollarse y producir mayor cosecha; este resultado es reforzado con la aplicación del bioestimulante Fhis mares el cual actúa como un activador del desarrollo radicular, vegetativo y la producción de frutos de calidad. Ambos factores determinaron un mejor rendimiento de grano para los distintos cultivares.

4.10. Rendimiento de grano seco en gr/parcela y kg ha\(^{-1}\)

En las tablas 52 y 53 del anexo, se presenta los anovas correspondientes para evaluar el rendimiento de grano seco en g/parcela y kg ha\(^{-1}\), donde observamos que existen diferencias significativas para abono orgánico (p<0.05) y para cultivares de tarwi, y la interacción tarwi * abono orgánico diferencias altamente significativas (p<0.01).

En la tabla 26 y gráfico 26, al realizar el test de comparaciones múltiples de Duncan, observamos que el mayor rendimiento de grano seco en gr/parcela y kg ha\(^{-1}\) lo tiene el cultivar de tarwi SCG-25, el cual difiere estadísticamente de los otros dos cultivares en estudio.

Tabla 26: Rendimiento de grano seco en gr/parcela y kg ha\(^{-1}\) por efecto de factor cultivar, para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019.

<table>
<thead>
<tr>
<th>Tarwi</th>
<th>RENDIMIENTO</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>gr/parcela</td>
<td>Kg ha(^{-1})</td>
<td>Medias</td>
<td>Duncan</td>
</tr>
<tr>
<td>SCG25</td>
<td>835.48</td>
<td>A</td>
<td>961.01</td>
<td>A</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>596.02</td>
<td>B</td>
<td>745.02</td>
<td>B</td>
</tr>
<tr>
<td>SLP4</td>
<td>497.93</td>
<td>B</td>
<td>622.42</td>
<td>B</td>
</tr>
</tbody>
</table>

Las letras iguales, indican que no hay diferencia estadística significativa a nivel de Duncan α =0.05
Gráfico 26: Rendimiento de grano seco en gr/parcela y kg ha\(^{-1}\) por efecto de factor cultivar, para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019.

En la tabla 27 y gráfico 27, al realizar el test de comparaciones múltiples de Duncan, para rendimiento de grano seco en gramos por parcela y kg ha\(^{-1}\), para abono orgánico, observamos que, el mejor abono es el guano de islas, seguido de Bocashi, ambos difieren estadísticamente del Humus y el vacuno (testigo).

Tabla 27: Rendimiento de grano seco en gr/parcela y kg ha\(^{-1}\) por efecto de factor sustrato, para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019.

<table>
<thead>
<tr>
<th>Abono orgánico</th>
<th>RENDIMIENTO</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>gr/parcela</td>
<td>Kg ha(^{-1})</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Medias</td>
<td>Duncan</td>
<td>Medias</td>
</tr>
<tr>
<td>Guano de isla</td>
<td>754.65</td>
<td>A</td>
<td>943.31</td>
</tr>
<tr>
<td>Bocashi</td>
<td>686.14</td>
<td>AB</td>
<td>857.67</td>
</tr>
<tr>
<td>Humus</td>
<td>587.99</td>
<td>B</td>
<td>679.74</td>
</tr>
<tr>
<td>Vacuno</td>
<td>543.79</td>
<td>B</td>
<td>623.88</td>
</tr>
</tbody>
</table>

Las letras iguales, indican que no hay diferencia estadística significativa a nivel de Duncan \(\alpha =0.05\)
Gráfico 27: Rendimiento de grano seco en gr/parcela y kg/ha por efecto de factor abono orgánico, para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019.

En la tabla 28 y gráfico 28, al realizar el test de comparaciones múltiples de Duncan, para la interacción Tarwi*abono orgánico, observamos que, el mayor rendimiento de grano seco en gr/parcela y kg ha\(^{-1}\) lo obtuvo la interacción SCG-25*Guano de isla, seguido de SCG-25*Bocashi, ambos difieren estadísticamente del resto de tratamientos estudiados.

Tabla 28. Rendimiento de grano seco en gr/parcela y kg/ha\(^{-1}\) por efecto de interacción de factores (tarwi*abono orgánico), para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019.

<table>
<thead>
<tr>
<th>Tarwi</th>
<th>Abono orgánico</th>
<th>RENDIMIENTO</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>gr/parcela</td>
<td>Kg/ha(^{-1})</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Medias</td>
<td>Duncan</td>
<td>Medias</td>
<td>Duncan</td>
</tr>
<tr>
<td>SCG25</td>
<td>Guano de isla</td>
<td>1036.23</td>
<td>A</td>
<td>1295.29</td>
<td>A</td>
</tr>
<tr>
<td>SCG25</td>
<td>Bocashi</td>
<td>950.43</td>
<td>AB</td>
<td>1188.04</td>
<td>AB</td>
</tr>
<tr>
<td>SLP4</td>
<td>Guano de isla</td>
<td>671.58</td>
<td>CD</td>
<td>839.48</td>
<td>BC</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>Vacuno</td>
<td>703.95</td>
<td>BCD</td>
<td>879.94</td>
<td>BC</td>
</tr>
<tr>
<td>SCG25</td>
<td>Humus</td>
<td>897.78</td>
<td>ABC</td>
<td>788.89</td>
<td>CD</td>
</tr>
<tr>
<td>SCG25</td>
<td>Vacuno</td>
<td>457.47</td>
<td>DE</td>
<td>571.84</td>
<td>CD</td>
</tr>
<tr>
<td>SLP4</td>
<td>Bocashi</td>
<td>494.13</td>
<td>DE</td>
<td>617.66</td>
<td>CD</td>
</tr>
<tr>
<td>SLP4</td>
<td>Vacuno</td>
<td>469.95</td>
<td>DE</td>
<td>587.44</td>
<td>CD</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>Bocashi</td>
<td>613.86</td>
<td>DE</td>
<td>767.33</td>
<td>CD</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>Guano de isla</td>
<td>556.14</td>
<td>DE</td>
<td>695.18</td>
<td>CD</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>Humus</td>
<td>510.12</td>
<td>DE</td>
<td>637.65</td>
<td>CD</td>
</tr>
<tr>
<td>SLP4</td>
<td>Humus</td>
<td>356.07</td>
<td>E</td>
<td>445.09</td>
<td>D</td>
</tr>
</tbody>
</table>

Las letras iguales, indican que no hay diferencia estadística significativa a nivel de Duncan \(\alpha = 0.05\)
Gráfico 28: Rendimiento de grano seco en gr/parcela y kg ha\(^{-1}\) por efecto de interacción de factores (tarwi*abono orgánico), para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas.

Arequipa, 2019.

El coeficiente de variación es de 21.58 y 25.45\%, que es aceptable e indica el porcentaje de variación en el experimento. Asimismo, el coeficiente de determinación es de 0.78 y 0.71 e indica el modelo experimental es el adecuado.

Según señala Tapia (2007), el tarwi es un cultivo de climas fríos llegando a temperaturas de hasta -4\(^{\circ}\)C y según Camarena (et al. 2012) la temperatura optima es de 20 y 25\(^{\circ}\)C durante el día y 8 \(^{\circ}\)C por la noche. A pesar de tener condiciones óptimas hubo variaciones en los rendimientos de tarwi en la zona de Sabandía, el mejor rendimiento de grano seco en g/parcela y kg ha\(^{-1}\) fue obtenido en la interacción SCG-25*Guano de isla con 1295,29 kg ha\(^{-1}\). Estas plantas presentaron fenológicamente un mejor desarrollo, mayor resistencia a enfermedades, registraron mayor número de vainas en la inflorescencia del eje central, permitiendo obtener rendimientos más altos.

De la Cruz (2018), en su trabajo experimental sobre la caracterización fenológica y rendimiento de ecotipos de tarwi desarrollada en el Callejón de Huaylas en Ancash encontró que el rendimiento de grano para Yunguyo fue de 1121.85 kg ha\(^{-1}\) comparado con nuestro
trabajo experimental el cultivar Yunguyo logra su mayor rendimiento con la combinación con estiércol de vacuno logrando 879.94 kg ha\(^{-1}\), al respecto durante el desarrollo del cultivo de tarwi presentó susceptibilidad a enfermedades radiculares por *Fusarium sp* afectando el cultivo. Las plantas resistieron el ataque de la enfermedad, pero al presentarse en época de floración afectó en un menor cuajado de frutos, rendimiento de grano seco kg ha\(^{-1}\).

El tratamiento SCG-25*guano de isla presenta una media del rendimiento 1295.29 kg ha\(^{-1}\), a comparación del tratamiento testigo SCG-25*vacuno cuya media del rendimiento fue 571.84 kg ha\(^{-1}\); mostrándonos claramente la intervención activa de macronutrientes NPK presentes en el guano de isla y de disposición inmediata para la nutrición de las plantas, que favorecieron el crecimiento, la vigorosidad, resistencia a plagas y enfermedades, mayor formación de granos en vaina y calidad de grano a la cosecha, en comparación al testigo que presento menor tamaño, menor área foliar, menor cuajado de grano, confirmando que un menor rendimiento estaría relacionado a la fuente de abonamiento.

Si destacamos las característica fenológicas del tratamiento que obtuvo el mayor rendimiento de grano (SCG-25*guano de isla), podemos apreciar que predomina en el porcentaje de germinación a los 10 dds de evaluación, respecto a la altura de planta obtuvo la mayor altura a los 60 dds, así también respecto a los días de inicio a la floración este tratamiento se comportó mejor a los 69 dds (central) y a los 102 (lateral), en cuanto a los días de inicio de madurez fisiológica primó a los 166 dds y 190 dds de evaluación, finalmente respecto al número de vainas por planta obtuvo el más alto número de vainas frente a los otros tratamientos; lo que propicio un mejor rendimiento de grano seco a la cosecha.

MINAGRI (2018), menciona que la producción de tarwi ha ido creciendo a una tasa promedio de 5.8% en los últimos diez años este crecimiento responde a una mayor superficie de cosecha registrando 10,3 mil hectáreas al 2017 el rendimiento promedio nacional también contribuyó al aumento de la producción de tarwi en la última década pues de obtenerse 1,132
kg ha\(^{-1}\) en el año 2,007 se ha pasado a 1,335 kg ha\(^{-1}\) en el año 2,017 comparando con los resultados obtenidos en este trabajo de investigación los rendimientos son variados en los cultivares en estudio, mostrando susceptibilidad a enfermedades radiculares, condiciones edafoclimáticas y al proceso propio de adaptación del tarwi a la zona de introducción.

4.11. Porcentaje de materia seca y humedad de grano.

En las tablas 54 y 55 del anexo, se presenta los anovas correspondientes para evaluar el porcentaje de materia seca y humedad del grano; donde observamos que existen diferencias altamente significativas, sólo para la interacción tarwi*abono orgánico (p<0.01) para humedad.

En la tabla 29 y gráfico 29, al realizar el test de comparaciones múltiples de Duncan, observamos que el mayor porcentaje de materia seca y humedad del grano, lo tiene el cultivar de tarwi SCG-25 seguido de Yunguyo, siendo el menor el cultivar SLP-4, no difieren estadísticamente entre ellos.

Tabla 29: Porcentaje de materia seca y humedad de grano por efecto de factor cultivar, para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019.

<table>
<thead>
<tr>
<th></th>
<th>% MS</th>
<th>% Humedad</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCG25</td>
<td>9.59</td>
<td>A 0.89</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>9.58</td>
<td>A 0.89</td>
</tr>
<tr>
<td>SLP4</td>
<td>9.48</td>
<td>A 0.88</td>
</tr>
</tbody>
</table>

Las letras iguales, indican que no hay diferencia estadística significativa a nivel de Duncan α =0.05
Gráfico 29: Porcentaje de materia seca y humedad de grano por efecto de factor cultivo r, para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019.

Como se puede apreciar en la tabla y gráfico 29 los tres cultivares presentan valores homogéneos para % de materia seca y humedad para grano seco cosechado a 210 dds respondiendo esta característica a la genética propia de cada cultivar. Dicha característica está relacionada directamente con las características fenológicas del grano donde el cultivar SCG-25 es de mayor tamaño y de textura más pastosa por sus cualidades nutricionales posiblemente al presentar mayor cantidad de fotoasimilados siendo el cultivar SLP-4 de menor calidad al presentar menor % de materia seca afectando al rendimiento de grano seco a la cosecha.

En la tabla 30 y gráfico 30, al realizar el test de comparaciones múltiples de Duncan, para % MS y % de humedad del grano, en abonos orgánicos, observamos que, el mejor abono es el humus de lombriz, seguido de Bocashi, y el de mayor % de humedad Bocashi, en ambos casos no difieren estadísticamente uno del otro.
Tabla 30. Porcentaje de materia seca y humedad de grano por efecto de factor abono orgánico, para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019.

<table>
<thead>
<tr>
<th>Abono orgánico</th>
<th>% MS</th>
<th>% Humedad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humus</td>
<td>9.69</td>
<td>0.86</td>
</tr>
<tr>
<td>Bocashi</td>
<td>9.49</td>
<td>0.92</td>
</tr>
<tr>
<td>Guano de isla</td>
<td>9.52</td>
<td>0.88</td>
</tr>
<tr>
<td>Vacuno</td>
<td>9.49</td>
<td>0.89</td>
</tr>
</tbody>
</table>

Las letras iguales, indican que no hay diferencia estadística significativa a nivel de Duncan α =0.05

Gráfico 30: Porcentaje de materia seca y humedad de grano por efecto de factor abono orgánico, para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019.

En la tabla 31 y gráfico 31, al realizar el test de comparaciones múltiples de Duncan, para la interacción Tarwi*abono orgánico, observamos que, el mayor % de materia seca lo obtuvo la interacción SCG-25*Humus el cual solamente difiere de la interacción SLP-4*vacuno (testigo) y para el % de humedad lo tiene la interacción SCG-25*Bocashi que difiere únicamente de los tratamientos SCG-25*vacuno y SLP-4*humus; porcentajes intermedios se presentaron para las otras interacciones.
Tabla 31: Porcentaje de materia seca y humedad de grano por efecto de interacción de factores (tarwi*abono orgánico), para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019.

<table>
<thead>
<tr>
<th>Sustratos</th>
<th>Medias Duncan</th>
<th>Medias Duncan</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCG25</td>
<td>Bocashi</td>
<td>9.47 AB 1.07 A</td>
</tr>
<tr>
<td>SLP4</td>
<td>Vacuno</td>
<td>9.30 B 1.00 AB</td>
</tr>
<tr>
<td>SLP4</td>
<td>Guano de isla</td>
<td>9.43 AB 0.93 ABC</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>Humus</td>
<td>9.47 AB 0.93 ABC</td>
</tr>
<tr>
<td>SCG25</td>
<td>Humus</td>
<td>9.87 A 0.90 ABCD</td>
</tr>
<tr>
<td>SLP4</td>
<td>Bocashi</td>
<td>9.43 AB 0.90 ABCD</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>Vacuno</td>
<td>9.73 AB 0.90 ABCD</td>
</tr>
<tr>
<td>SCG25</td>
<td>Guano de isla</td>
<td>9.60 AB 0.83 BCD</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>Guano de isla</td>
<td>9.53 AB 0.87 BCD</td>
</tr>
<tr>
<td>SCG25</td>
<td>Vacuno</td>
<td>9.43 AB 0.77 CD</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>Bocashi</td>
<td>9.57 AB 0.80 CD</td>
</tr>
<tr>
<td>SLP4</td>
<td>Humus</td>
<td>9.73 AB 0.73 D</td>
</tr>
</tbody>
</table>

Las letras iguales, indican que no hay diferencia estadística significativa a nivel de Duncan α =0.05

Gráfico 31: Porcentaje de materia seca y humedad de grano por efecto de interacción de factores (tarwi*abono orgánico), para la adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019.
El coeficiente de variación es de 2.54, 2.74 y 11.1%, que es aceptable e indica el porcentaje de variación en el experimento. Asimismo, el coeficiente de determinación es de 0.35, 0.4 y 0.59 e indica el modelo experimental es el adecuado.

Podemos observar que no existen diferencias estadísticas en la interacción (tarwi*abono orgánico) para % de materia seca donde el cultivar SCG-25*Humus tiene mayor % de materia seca con 9.87% en relación a los otros tratamientos verificándose lo anteriormente dicho del cultivar SCG-25 presenta alto contenido de nutrientes sobresaliendo en relación a los otros cultivares Yunguyo y SLP-4.

Bidwel mencionado por Cáceres (1999), nos dice: “El periodo comprendido entre la floración y maduración de granos corresponde a la época en la cual la absorción de los minerales del suelo han bajado sustancialmente y se inicia la translocación de los fotosintatatos acumulados en la parte foliar hacia los granos de la vaina donde son acumulados como compuestos más complejos (almidones, aceites, proteínas, y otros) por lo que en granos y vainas se han acumulado el mayor % de proteína de la planta”.

Efectivamente en el experimento observamos que en la etapa de llenado de grano y maduración las plantas han dejado de crecer y están traslocando todas las reservas en la formación, crecimiento y maduración del grano y deducimos que el cultivar SCG-25 al ser de mayor tamaño contiene mayor % de materia seca y alto contenido de nutrientes. Esta característica tiene relación directa con el rendimiento de grano siendo el cultivar SCG-25 en combinación con la aplicación de Guano de Isla 1250 kg ha⁻¹ el que presenta el mayor rendimiento de grano con 1295.29 kg ha⁻¹.

Para el análisis sensorial para ocopa, en la tabla 32 y gráfico 32, a través de la escala hedónica, se observa que, de la calificación propuesta que, el cultivar Yunguyo, es el más aceptado para olor, color y sabor y “gusta muchísimo”, seguidamente del cultivar de SLP-4.
“gusta mucho” y el cultivar SCG-25 “gusta moderadamente”, frecuencias menores para las otras calificaciones, de olor, color y sabor.

Tabla 32: Análisis sensorial de tarwi (ocopa), para determinar el cultivar que tiene mayor preferencia por el consumidor, en el trabajo experimental: Adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019.

<table>
<thead>
<tr>
<th>Calificación</th>
<th>Yunguyo</th>
<th>SCG25</th>
<th>SLP4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Color</td>
<td>Olor</td>
<td>Sabor</td>
</tr>
<tr>
<td>Gusta muchísimo.</td>
<td>25</td>
<td>20</td>
<td>24</td>
</tr>
<tr>
<td>Gusta mucho.</td>
<td>5</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>Gusta moderadamente.</td>
<td>11</td>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td>Gusta poco.</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Ni gusta ni disgusta.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Gráfico 32: Análisis sensorial de tarwi (ocopa), para determinar el cultivar que tiene mayor preferencia por el consumidor, en el trabajo experimental: Adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019.

Para el análisis sensorial de la torta, en la tabla 33 y gráfico 33, se observa que, de la calificación según la escala propuesta, observamos que, el cultivar Yunguyo, es el más
 aceptado para olor, color y sabor para la torta, seguido de SLP-4 y el cultivar SCG-25 a los cuales les gustaba muchísimo y mucho, para el cultivar SCG-25.

Tabla 33: Análisis sensorial de tarwi (torta), para determinar el cultivar que tiene mayor preferencia por el consumidor, en el trabajo experimental: Adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019.

<table>
<thead>
<tr>
<th>Calificación</th>
<th>Yunguyo</th>
<th>SCG25</th>
<th>SLP4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Color</td>
<td>Olor</td>
<td>Sabor</td>
</tr>
<tr>
<td>Gusta muchísimo.</td>
<td>32</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>Gusta mucho.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gusta moderadamente.</td>
<td>6</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Gusta poco.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Gráfico 33: Análisis sensorial de tarwi (torta), para determinar el cultivar que tiene mayor preferencia por el consumidor, en el trabajo experimental: Adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019.
Tabla 34. Análisis sensorial de tarwi (chicha), para determinar el cultivar que tiene mayor preferencia por el consumidor, en el trabajo experimental: Adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019.

<table>
<thead>
<tr>
<th>Calificación</th>
<th>Yunguyo Color</th>
<th>Yunguyo Olor</th>
<th>Yunguyo Sabor</th>
<th>SCG25 Color</th>
<th>SCG25 Olor</th>
<th>SCG25 Sabor</th>
<th>SLP4 Color</th>
<th>SLP4 Olor</th>
<th>SLP4 Sabor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gusta muchísimo</td>
<td>30</td>
<td>28</td>
<td>27</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>10</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>Gusta mucho</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>18</td>
<td>15</td>
<td>15</td>
<td>18</td>
<td>14</td>
<td>13</td>
</tr>
<tr>
<td>Gusta moderadamente</td>
<td></td>
<td></td>
<td></td>
<td>11</td>
<td>16</td>
<td>15</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Gusta poco</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Ni gusta ni disgusta</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Gráfico 34: Análisis sensorial de tarwi (chicha), para determinar el cultivar que tiene mayor preferencia por el consumidor, en el trabajo experimental: Adaptabilidad de tres cultivares de Tarwi con diferentes enmiendas orgánicas. Arequipa, 2019.

Para el análisis sensorial de la chicha, en la tabla 34 y gráfico 34, se observa que, de la calificación según la escala propuesta, observamos que, el cultivar Yunguyo, es el más aceptado para olor, color y sabor para la torta, seguido de SLP-4 y el cultivar SCG-25 a los cuales les gustaba muchísimo y mucho, para el cultivar SCG-25.
El tarwi en nuestro medio es un alimento poco conocido y su consumo es muy limitado por falta de difusión y por desconocimiento de las propiedades nutritivas y la forma como incluirlo en la preparación de nuestros alimentos por ese motivo realizamos esta evaluación con la finalidad fomentar su consumo con la preparación de platos dulces, salados y bebidas. Al aplicar la encuesta con la metodología de la escala hedónica de 9 puntos, en la evaluación sensorial de alimentos (Tarwi) con la finalidad de determinar cuál de los tres cultivares presenta la mejor aceptación, para tal efecto se prepararon tres platos: torta de tarwi, ocopa de tarwi y chicha de tarwi. Siendo favorecido en las encuestas el cultivar Yunguyo con la calificación “Gusta muchísimo” seguido de SLP-4 “Gusta mucho” y SCG-25 “gusta moderadamente”. Los resultados nos muestran que el cultivar que tiene mayor aceptación es Yunguyo por sus características organolépticas como olor, sabor, color y textura mucho más suave hacen que se imponga sobre los demás cultivares.

El cultivar que se comercializa en Arequipa es Yunguyo; en menor proporción los cultivares SCG-25 Y SLP-4 los cuales son usados para autoconsumo en la localidad de procedencia en este caso la ciudad de Puno. Las cualidades del grano de tarwi cultivar Yunguyo se caracteriza por ser de consistencia suave y agradable. El cultivar SCG-25 es de consistencia más pastosa posiblemente por la presencia de más fotoasimilados y SLP-4 es de consistencia suave. Al respecto La FAO (2007), referente al uso de tarwi en la alimentación nos dice: De acuerdo con pruebas realizadas con este grano, luego del desamargado, este ha demostrado adaptarse a múltiples usos en la preparación de salsas, ensaladas, guisos, bebidas, postres, galletas y queques, lográndose una buena aceptación. Dentro de las recetas más comunes, se encuentran: picante de chocho, cebiche serrano, salsa roja y verde y manzana rellena con miel serrana.
En una encuesta realizada por Universidad Nacional Agraria – La Molina en el año 2018 en la ciudad de Lima de 83 encuestas para captar la percepción de los consumidores sobre el tarwi en el Perú con los siguientes resultados:

1) 50 de los entrevistados fueron de Lima, 13 de la Sierra Sur, 13 de la Región Norte y 7 de la Región Centro.

2) 25 de los encuestados manifestaron conocer el valor nutricional del tarwi y 58 dijeron que no lo conocen.

3) 42 de los encuestados adquieren el tarwi en mercados, 12 en ambulantes; 55 compran con fines alimenticios y solo 2 con fines medicinales.

4) 35 encuestados consumen por tradición familiar y 17 por referencias. Solo 4 encuestados consumen derivados del tarwi. 36 estarían dispuestos a consumir pan de tarwi y 11 estarían dispuestos a consumir derivados.

En conclusión, de las encuestas y entrevistas realizadas se determinó que la gente conoce de la calidad alimenticia del tarwi, no siendo una limitante el factor precio, pero sí lo es la calidad del producto tanto en fresco como en procesados.

Sería recomendable brindar mayor información al consumidor sobre el proceso de desamargado del tarwi para crear confianza y no represente una limitante para su consumo, por el contrario valorar sus propiedades nutritivas en la alimentación de la población.
CONCLUSIONES

- El cultivar de tarwi SCG-25 muestra mejor su adaptabilidad a las condiciones medioambientales de Sabandía-Arequipa, resaltando su genética y rusticidad, mayor resistencia a plagas y enfermedades, además de ser el cultivar que obtuvo el mayor rendimiento (961,01 kg ha\(^{-1}\)), dentro de sus características fenológicas primó ante los otros cultivares respecto al % de emergencia a los 10 dds, días al inicio de floración a los 69 dds (central) y a los 102 dds (lateral), días al inicio de formación de vainas solamente primó en el desarrollo de ramas laterales a los 131 dds de evaluación, mas no en el je central (82 dds), luego respecto a los días del inicio de la madurez fisiológica primó a los 166 dds de evaluación y finalmente lideró en el número de vainas por planta.

- Respecto a la mejor enmienda orgánica en el rendimiento del cultivo de tarwi fue el guano de isla cuya incorporación de 1,250 kg ha\(^{-1}\) a los 60 dds, logró el mayor rendimiento de grano seco de tarwi 943.31 kg ha\(^{-1}\), consiguiendo además primar ante los otros abonos orgánicos y sobre todo del testigo (estiércol de vacuno), respecto altura de planta los 30, 60, 120 y 210dds, días al inicio de formación de vainas solamente primó en el desarrollo de ramas laterales (131 dds) junto al abono bocashi, mas no en el eje central (82 dds), luego respecto a los días del inicio de la madurez fisiológica primó a los 166 dds y 190 dds, así también obtuvo el mayor número de vainas por planta, mayor longitud de vainas por planta, mayor número de granos por vaina y el mejor rendimiento grano g/planta.

- Respecto al rendimiento de grano obtenido por los tratamientos estudiados, el rendimiento más alto fue obtenido por el tratamiento (SCG-25*guano de isla) que alcanzó 1295,29 kg ha\(^{-1}\), seguido por el tratamiento (SCG-25*bocashi) con 1188,04 kg ha\(^{-1}\), corroborando así que el cultivar SCG-25 ha tenido un mejor comportamiento en Sabandía – Arequipa y el abono que mejor ha colaborado con el crecimiento y desarrollo del tarwi fue el guano de isla y el bocashi, así mencionamos que Yunguyo*vacuno (testigo) logro un rendimiento de 879,94 kg ha\(^{-1}\) y el SCC-G25*humus de lombriz 788.89 kg ha\(^{-1}\).
RECOMENDACIONES

1. El tarwi es un cultivo con potencial productivo para el futuro, por sus cualidades nutritivas y su capacidad de adaptación a diferentes zonas y representa una forma natural de nutrir los suelos degradados como fijador de nitrógeno.

2. Introducirlo en un sistema de policultivo intercalando con otros cultivos para aprovechar su cualidad como fijador natural de nitrógeno; repelente de insectos y aprovechar la atracción que ejerce su floración sobre insectos polinizadores, para la producción de miel e incrementar la fecundación de otros cultivos como frutales.

3. Continuar con la investigación de nuevos ecotipos, cultivares o variedades de tarwi en la zona, para determinar aquellos que presenten buena adaptabilidad y mejor comportamiento en rendimiento de grano seco.

4. Realizar investigaciones en diferentes épocas y densidades de siembra, para establecer adecuadamente las mejores épocas y densidades.

5. Se recomienda incentivar el consumo del grano de tarwi por su alto valor alimenticio especialmente en proteínas, grasas insaturadas, minerales y fibra, también por la facilidad para preparar diferentes platos.
BIBLIOGRAFÍA

- Camarena, F; Cerrate, A; Del Carpio, G. (1986). Evaluación del comportamiento agronómico, rendimiento y composición química del grano de siete selecciones de tarwi (Lupinus mutabilis Sweet) en dos localidades de la sierra centro y norte del Perú. Anales científicosUNALM:61-72.

• De la Cruz, Néstor. (2018) Caracterización fenológica y rendimiento de ecotipos de tarwi (Lupinus mutabilis Sweet) en el Callejón de Huaylas, Ancash.

114

ANEXOS

ANEXO 1: Datos del análisis físico-químico del suelo del experimento

<table>
<thead>
<tr>
<th>ELEMENTO</th>
<th>UNIDAD</th>
<th>VALOR</th>
<th>DEFICIENTE</th>
<th>BAJO</th>
<th>NORMAL</th>
<th>ALTO</th>
<th>EXCESIVO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materia Orgánica</td>
<td>%</td>
<td>2.31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogeno (C:N)</td>
<td>%</td>
<td>0.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fósforo (P)</td>
<td>ppm</td>
<td>24.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potasio (K)</td>
<td>ppm</td>
<td>274.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CODiCa</td>
<td>%</td>
<td>0.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O.E</td>
<td>dS/m extr. 1:2.5</td>
<td>0.43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td></td>
<td>7.93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BORO</td>
<td>mg/Kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAPACIDAD DE INTERCAMBIO CATIONICO (meq/100gr de suelo)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catión(Ca)</td>
</tr>
<tr>
<td>------------</td>
</tr>
<tr>
<td>14.400</td>
</tr>
</tbody>
</table>

ANÁLISIS FÍSICO: INTERPRETACIÓN

Suelo de textura moderadamente gruesa, deficiente en retención de humedad, baja capacidad de aireación del suelo; para mejorar la calidad del suelo agrícola incorporar materia orgánica de acuerdo al cultivo a instalar.

ANÁLISIS QUÍMICO: INTERPRETACIONES

<table>
<thead>
<tr>
<th>CULTIVO</th>
<th>NIVELES ÓPTIMOS</th>
<th>INTERPRETACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Es un suelo con reaccion moderadamente alcalino en pH, no salino en conductividad eléctrica, bajo en contenido de materia orgánica y nitrogeno, alto en concentracion fosforo y potasio respectivamente; Para efectuar la recomendacion de nutrient considerar la incorporacion de materia orgánica y fertilizantes en base de sulfatos</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ANEXO 2: Análisis de materia orgánica del suelo al final del proyecto.

En la muestra inicial referida al laboratorio de suelos nos indicaba que el porcentaje de materia orgánica de la muestra era baja 2.31%. Finalizado el proyecto tenemos los siguientes resultados en referencia a materia orgánica.

<table>
<thead>
<tr>
<th>N° Lab</th>
<th>N° Muestra</th>
<th>pH Ext. 1:5</th>
<th>C.E. Ext. 1:5</th>
<th>% N</th>
<th>% M.O.</th>
<th>ppm P2O5</th>
<th>ppm K2O</th>
<th>Tipo de Muestra</th>
</tr>
</thead>
<tbody>
<tr>
<td>8377</td>
<td>G.I</td>
<td>1.88</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Suelo</td>
</tr>
<tr>
<td>8378</td>
<td>H.L.</td>
<td>2.40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Suelo</td>
</tr>
<tr>
<td>8379</td>
<td>E</td>
<td>2.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Suelo</td>
</tr>
<tr>
<td>8380</td>
<td>B</td>
<td>3.47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Suelo</td>
</tr>
</tbody>
</table>

Nota: Determinación de Materia orgánica por el método Walkley Black.
ANEXO 3: Datos climatológicos

<table>
<thead>
<tr>
<th>V Cod Esta</th>
<th>V Cod Bp</th>
<th>V Cod Para</th>
<th>AÑO</th>
<th>04_ABR</th>
<th>05_MAY</th>
<th>06_JUN</th>
<th>07_JUL</th>
<th>08_AGO</th>
<th>09_SET</th>
<th>10_OCT</th>
<th>11_NOV</th>
<th>12_DIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>847</td>
<td>52</td>
<td>HUMEDAD RELATIVA</td>
<td>2017</td>
<td>77</td>
<td>77</td>
<td>63</td>
<td>46</td>
<td>56</td>
<td>65</td>
<td>58</td>
<td>69</td>
<td>72</td>
</tr>
<tr>
<td>847</td>
<td>52</td>
<td>TEMPERATURA MEDIA</td>
<td>2017</td>
<td>13.51</td>
<td>13.88</td>
<td>11.4</td>
<td>12.4</td>
<td>12.2</td>
<td>14.1</td>
<td>14.5</td>
<td>15</td>
<td>13.9</td>
</tr>
<tr>
<td>847</td>
<td>52</td>
<td>TEMPERATURA MINIMA</td>
<td>2017</td>
<td>6.59</td>
<td>5.99</td>
<td>4.52</td>
<td>5.12</td>
<td>4.99</td>
<td>6.33</td>
<td>5.86</td>
<td>5.59</td>
<td>6.16</td>
</tr>
<tr>
<td>847</td>
<td>52</td>
<td>VELOCIDAD Y DIRECCION DEL VIENTO</td>
<td>2017</td>
<td>SW-5.0</td>
<td>SW-6.6</td>
<td>SW-6.6</td>
<td>SW-6.6</td>
<td>SW-7.6</td>
<td>SW-5.3</td>
<td>SW-6.0</td>
<td>SW-5.4</td>
<td>SW-5.2</td>
</tr>
<tr>
<td>847</td>
<td>52</td>
<td>HUMEDAD RELATIVA MAXIMA</td>
<td>2017</td>
<td>94</td>
<td>98</td>
<td>96</td>
<td>70</td>
<td>85</td>
<td>91</td>
<td>80</td>
<td>89</td>
<td>96</td>
</tr>
<tr>
<td>847</td>
<td>52</td>
<td>HUMEDA RELATIVA MINIMA</td>
<td>2017</td>
<td>41</td>
<td>52</td>
<td>41</td>
<td>32</td>
<td>33</td>
<td>30</td>
<td>35</td>
<td>34</td>
<td>34</td>
</tr>
</tbody>
</table>
ANEXO 4. Análisis de Bocashi.

<table>
<thead>
<tr>
<th>NOMBRE O RAZON SOCIAL DEL SOLICITANTE</th>
<th>MARIA DEL ROSARIO PINTO RODRIGUEZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROCEDENCIA</td>
<td>SABANDIA</td>
</tr>
<tr>
<td>MUESTRA</td>
<td>BOKASHI</td>
</tr>
<tr>
<td>CODIGO DE LABORATORIO</td>
<td>8381</td>
</tr>
<tr>
<td>FECHA DE INGRESO</td>
<td>02/04/2019</td>
</tr>
<tr>
<td>PROCEDENCIA DE LA MUESTRA</td>
<td>SABANDIA</td>
</tr>
<tr>
<td>LOTE</td>
<td>1</td>
</tr>
<tr>
<td>TIPO DE ANALISIS</td>
<td>CARACTERIZACION</td>
</tr>
<tr>
<td>Nº DE INFORME</td>
<td>8398</td>
</tr>
</tbody>
</table>

ANALISIS FISICO

<table>
<thead>
<tr>
<th>ARENA (%)</th>
<th>LIMO (%)</th>
<th>ARECILLA (%)</th>
<th>TEXTURA</th>
<th>POROSIDAD (%)</th>
<th>CAPACIDAD DE CAMPO (%)</th>
<th>AGUA DISPONIBLE (%)</th>
<th>PUNTO MARCHA PERMANENTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>70.4</td>
<td>23.2</td>
<td>6.8</td>
<td>FRANCO ARENOSO</td>
<td>38.0</td>
<td>11.3</td>
<td>7.9</td>
<td>3.4</td>
</tr>
</tbody>
</table>

ANALISIS QUIMICO

<table>
<thead>
<tr>
<th>ELEMENTO</th>
<th>UNIDAD</th>
<th>VALOR</th>
<th>DEFICIENTE</th>
<th>BAJO</th>
<th>NORMAL</th>
<th>ALTO</th>
<th>EXCESIVO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materia Organica</td>
<td>%</td>
<td>11.74</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogeno Total:</td>
<td>%</td>
<td>0.46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fosforo : P2O5</td>
<td>ppm</td>
<td>1250.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potasio : K2O</td>
<td>ppm</td>
<td>4517.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C/3Ca</td>
<td>%</td>
<td>1.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C.E</th>
<th>dS/m extr. 1:2.5</th>
<th>7.22</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>EXTR. 1:2.5</td>
<td>7.00</td>
</tr>
<tr>
<td>BORO</td>
<td>mg/Kg</td>
<td></td>
</tr>
</tbody>
</table>

CAPACIDAD DE INTERCAMBIO CATIONICO (meq/100gr de suelo)

<table>
<thead>
<tr>
<th>Ca(II)(Ca)</th>
<th>Mg(II)(Mg)</th>
<th>Na(I)(Na)</th>
<th>K(I)(K)</th>
<th>CEC</th>
<th>Suma de Bases</th>
<th>PSI</th>
<th>Interpretacion</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.200</td>
<td>2.400</td>
<td>0.304</td>
<td>0.272</td>
<td>26.176</td>
<td>26.176</td>
<td>1.161</td>
<td>Alto</td>
</tr>
</tbody>
</table>

CULTIVO

<table>
<thead>
<tr>
<th>TIPO DE SUELO REQUERIDO</th>
<th>INTERPRETACION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Es una muestra Bokashi orgnico, determinacion de textura solo es referencial.</td>
</tr>
</tbody>
</table>

ANALISIS QUIMICO : INTERPRETACIONES

<table>
<thead>
<tr>
<th>CULTIVO</th>
<th>VALORES OPTIMOS</th>
<th>INTERPRETACION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Es una muestra con reaccion neutro en pH, muy salino en conductividad electrica, alto contenido de materia organica, nitrogeno, fosforo y potasio; con referencia a la Capacidad Intercambio Cationico CIC la interpretacion es Alto.</td>
</tr>
</tbody>
</table>
ANEXO 5: Platos preparados con tarwi

TORTA DE TARWI.

INGREDIENTES.

1 paquete mantequilla de 225g; 1 taza colmada de azúcar; 2 tazas de tarwi; 2 ½ tazas de harina; 5 huevos; 1 ½ taza de jugo de naranja; 1 copa de pisco; 1 ch de cascarita de naranja rayada.

REFERENCIAS: El tarwi para esta torta después de pelar se licua con el jugo de naranja; si desea puede licuar con su cascarita; después de lavar.

PREPARACIÓN: Bata la mantequilla con el azúcar hasta que esté cremosa, agregue las yemas y siga batiendo hasta que desaparezca el azúcar, agregue la cascarita rayada de naranja.

Luego ponga por cucharadas la harina aireada de antemano con el royal intercalando con el tarwi licuado, bata bastante después de cada adición.

Finalmente ponga las claras batidas a punto de nieve, mezcle suavemente, luego vacíe a un molde engrasado y enharinado; ponga a horno caliente por 45 minutos; saque y deje enfriar, luego vacíe a un plato y servir.

OCOPA DE TARWI.

INGREDIENTES: 200 g de tarwi; 50 g de maní; ½ tarro de leche gloria; 1 paquete chico de galleta de vainilla; 2 ají amarillos verdes; Ramitas de huacatay; 2 cebollas medianas; 1 cabeza de ajo; Aceite y sal lo necesario.

Para acompañar: Papa sancochada en rodajas, huevo sancochado, aceituna, hojas de lechuga fresca.

PREPARACION.

Sancochar las papas con sal, pelar y cortar en rodajas y reservar. Dar un pequeño hervor a los granos de tarwi y si desea pelar la cascarita para que la crema de tarwi sea más suave. Peler y picar los ajos y la cebolla en juliana. En una sartén con aceite caliente, dorar los ajos con la cebolla y agregar el aji amarillo despepitado y picado, escurrir el aceite y poner a enfriar.

En una licuadora agregamos el aderezo del sartén, el tarwi, las galleta, el maní la sal, la leche y por último las hojas de huacatay lavadas y picadas; licuar.

En un plato colocamos las hojas de lechuga y las rodajas de papa, servir la crema de tarwi y acompañar con huevo sancochado, aceitunas.
CHICA DE TARWI

INGREDIENTES: 3 tazas de tarwi; 10 tazas de agua; ½ taza de harina; 2 tazas de azúcar o más; 1 astilla de canela; 1 rama de hinojo; 1 vaso de chicha de jora o 1 CH colmada de levadura granulada fleishman disuelta en ½ taza de agua tibia; canela molida.

PREPARACIÓN: Ponga a hervir en una olla el tarwi licuado cascara y todo, la harina y la canela, durante 40 minutos, removiendo continuamente, ya para sacar adicionar la rama de hinojo. Cuele en una tela fina o un colador, una vez tibio agregue el azúcar y la chicha o levadura.

Vacíe a una vasija de barro o una olla de fierro aporcelanado, ponga en un lugar abrigado por 3 o 4 horas hasta que fermente y forme espuma en la superficie. Sirva espolvoreando con canela molida.
Tabla 35: Anova y test de Duncan para porcentaje de emergencia 1ra.

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>R²</th>
<th>R² Aj</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emer1ra</td>
<td>36</td>
<td>0.14</td>
<td>0.03</td>
<td>30</td>
</tr>
</tbody>
</table>

Cuadro de Análisis de la Varianza (SC tipo III)

<table>
<thead>
<tr>
<th>F.V.</th>
<th>SC</th>
<th>gl</th>
<th>CM</th>
<th>F</th>
<th>p-valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo.</td>
<td>5</td>
<td>4</td>
<td>1.25</td>
<td>1.25</td>
<td>0.3105</td>
</tr>
<tr>
<td>Bloque</td>
<td>1.5</td>
<td>2</td>
<td>0.75</td>
<td>0.75</td>
<td>0.4807</td>
</tr>
<tr>
<td>Tarwi</td>
<td>3.5</td>
<td>2</td>
<td>1.75</td>
<td>1.75</td>
<td>0.1905</td>
</tr>
<tr>
<td>Error</td>
<td>31</td>
<td>31</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>36</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Medias con una letra común no son significativamente diferentes (p > 0.05)

Tabla 36: Anova y test de Duncan para porcentaje de emergencia 2da

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>R²</th>
<th>R² Aj</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emer2da</td>
<td>36</td>
<td>0.49</td>
<td>0.43</td>
<td>20.6</td>
</tr>
</tbody>
</table>

Cuadro de Análisis de la Varianza (SC tipo III)

<table>
<thead>
<tr>
<th>F.V.</th>
<th>SC</th>
<th>gl</th>
<th>CM</th>
<th>F</th>
<th>p-valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo.</td>
<td>369.11</td>
<td>4</td>
<td>92.28</td>
<td>7.47</td>
<td>0.0002</td>
</tr>
<tr>
<td>Bloque</td>
<td>311.72</td>
<td>2</td>
<td>155.86</td>
<td>12.62</td>
<td>0.0001</td>
</tr>
<tr>
<td>Tarwi</td>
<td>57.39</td>
<td>2</td>
<td>28.69</td>
<td>2.32</td>
<td>0.1147</td>
</tr>
<tr>
<td>Error</td>
<td>382.78</td>
<td>31</td>
<td>12.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>751.89</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Medias con una letra común no son significativamente diferentes (p > 0.05)
Tabla 37: Anova y test de Duncan para porcentaje de emergencia 3ra.

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>R^2</th>
<th>R^2 Aj</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emer3ra</td>
<td>36</td>
<td>0.19</td>
<td>0.08</td>
<td>19.1</td>
</tr>
</tbody>
</table>

Cuadro de Análisis de la Varianza (SC tipo III)

<table>
<thead>
<tr>
<th>F.V.</th>
<th>SC</th>
<th>gl</th>
<th>CM</th>
<th>F</th>
<th>p-valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo.</td>
<td>195.61</td>
<td>4</td>
<td>48.9</td>
<td>1.8</td>
<td>0.1538</td>
</tr>
<tr>
<td>Bloque</td>
<td>113.56</td>
<td>2</td>
<td>56.78</td>
<td>2.09</td>
<td>0.1406</td>
</tr>
<tr>
<td>Tarwi</td>
<td>82.06</td>
<td>2</td>
<td>41.03</td>
<td>1.51</td>
<td>0.2365</td>
</tr>
<tr>
<td>Error</td>
<td>841.61</td>
<td>31</td>
<td>27.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1037.22</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tarwi | Medias | n | Duncan
SLP | 29.33 | 12 | A
SCG25| 26.75 | 12 | A
Yunguyo | 25.75 | 12 | A

Medias con una letra común no son significativamente diferentes ($p > 0.05$)
Tabla 38: Anova y test de Duncan para altura de planta a los 30 DDS.

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>R²</th>
<th>R² Aj</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alt30dds</td>
<td>360</td>
<td>0.15</td>
<td>0.12</td>
<td>15.61</td>
</tr>
</tbody>
</table>

Cuadro de Análisis de la Varianza (SC tipo III)

<table>
<thead>
<tr>
<th></th>
<th>SC</th>
<th>gl</th>
<th>CM</th>
<th>F</th>
<th>p-valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo</td>
<td>130.32</td>
<td>13</td>
<td>10.02</td>
<td>4.78</td>
<td><0.0001</td>
</tr>
<tr>
<td>Bloque</td>
<td>66.82</td>
<td>2</td>
<td>33.41</td>
<td>15.92</td>
<td><0.0001</td>
</tr>
<tr>
<td>Tarwi</td>
<td>32.87</td>
<td>2</td>
<td>16.44</td>
<td>7.83</td>
<td>0.0005</td>
</tr>
<tr>
<td>Sustratos</td>
<td>15.72</td>
<td>3</td>
<td>5.24</td>
<td>2.5</td>
<td>0.0597</td>
</tr>
<tr>
<td>Tarwi*Sustratos</td>
<td>14.91</td>
<td>6</td>
<td>2.48</td>
<td>1.18</td>
<td>0.3145</td>
</tr>
<tr>
<td>Error</td>
<td>726.34</td>
<td>346</td>
<td>2.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>856.66</td>
<td>359</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tarwi

<table>
<thead>
<tr>
<th></th>
<th>Medias</th>
<th>n</th>
<th>Duncan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yunguyo</td>
<td>9.6</td>
<td>120</td>
<td>A</td>
</tr>
<tr>
<td>SLP</td>
<td>9.37</td>
<td>120</td>
<td>A</td>
</tr>
<tr>
<td>SCG25</td>
<td>8.88</td>
<td>120</td>
<td>B</td>
</tr>
</tbody>
</table>

Medias con una letra común no son significativamente diferentes (p > 0.05)

Sustratos

<table>
<thead>
<tr>
<th></th>
<th>Medias</th>
<th>n</th>
<th>Duncan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guano de Isl</td>
<td>9.53</td>
<td>90</td>
<td>A</td>
</tr>
<tr>
<td>Bocashi</td>
<td>9.4</td>
<td>90</td>
<td>AB</td>
</tr>
<tr>
<td>Vacuno</td>
<td>9.21</td>
<td>90</td>
<td>AB</td>
</tr>
<tr>
<td>Humus</td>
<td>8.98</td>
<td>90</td>
<td>B</td>
</tr>
</tbody>
</table>

Medias con una letra común no son significativamente diferentes (p > 0.05)

Tarwi*Sustratos

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Medias</th>
<th>n</th>
<th>Duncan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yunguyo</td>
<td>Guano de Isl</td>
<td>9.9</td>
<td>30</td>
<td>A</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>Vacuno</td>
<td>9.67</td>
<td>30</td>
<td>AB</td>
</tr>
<tr>
<td>SLP</td>
<td>Guano de Isl</td>
<td>9.6</td>
<td>30</td>
<td>AB</td>
</tr>
<tr>
<td>SLP</td>
<td>Vacuno</td>
<td>9.6</td>
<td>30</td>
<td>AB</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>Bocashi</td>
<td>9.57</td>
<td>30</td>
<td>AB</td>
</tr>
<tr>
<td>SLP</td>
<td>Bocashi</td>
<td>9.43</td>
<td>30</td>
<td>AB</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>Humus</td>
<td>9.27</td>
<td>30</td>
<td>AB</td>
</tr>
<tr>
<td>SLP</td>
<td>Humus</td>
<td>8.83</td>
<td>30</td>
<td>BC</td>
</tr>
<tr>
<td>SCG25</td>
<td>Bocashi</td>
<td>9.2</td>
<td>30</td>
<td>AB</td>
</tr>
<tr>
<td>SCG25</td>
<td>Guano de Isl</td>
<td>9.1</td>
<td>30</td>
<td>ABC</td>
</tr>
<tr>
<td>SCG25</td>
<td>Humus</td>
<td>8.83</td>
<td>30</td>
<td>BC</td>
</tr>
<tr>
<td>SLP</td>
<td>Humus</td>
<td>8.83</td>
<td>30</td>
<td>BC</td>
</tr>
<tr>
<td>SCG25</td>
<td>Vacuno</td>
<td>8.37</td>
<td>30</td>
<td>C</td>
</tr>
</tbody>
</table>

Medias con una letra común no son significativamente diferentes (p > 0.05)
<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>R²</th>
<th>R² Aj</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alt60dds</td>
<td>360</td>
<td>0.15</td>
<td>0.12</td>
<td>22.7</td>
</tr>
</tbody>
</table>

Cuadro de Análisis de la Varianza (SC tipo III)

<table>
<thead>
<tr>
<th>F.V.</th>
<th>SC</th>
<th>gl</th>
<th>CM</th>
<th>F</th>
<th>p-valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo.</td>
<td>2312.66</td>
<td>13</td>
<td>177.9</td>
<td>4.67</td>
<td><0.0001</td>
</tr>
<tr>
<td>Bloque</td>
<td>574.12</td>
<td>2</td>
<td>287.06</td>
<td>7.54</td>
<td>0.0006</td>
</tr>
<tr>
<td>Tarwi</td>
<td>138.15</td>
<td>2</td>
<td>69.07</td>
<td>1.81</td>
<td>0.1646</td>
</tr>
<tr>
<td>Sustratos</td>
<td>936.61</td>
<td>3</td>
<td>312.2</td>
<td>8.2</td>
<td><0.0001</td>
</tr>
<tr>
<td>Tarwi*Sustratos</td>
<td>663.78</td>
<td>6</td>
<td>110.63</td>
<td>2.9</td>
<td>0.0089</td>
</tr>
<tr>
<td>Error</td>
<td>13177.12</td>
<td>346</td>
<td>38.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>15489.78</td>
<td>359</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tarwi | Medias | n | Duncan |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SLP</td>
<td>27.67</td>
<td>120</td>
<td>A</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>27.59</td>
<td>120</td>
<td>A</td>
</tr>
<tr>
<td>SCG25</td>
<td>26.32</td>
<td>120</td>
<td>A</td>
</tr>
</tbody>
</table>

Medias con una letra común no son significativamente diferentes (p > 0.05)

Sustratos | Medias | n | Duncan |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Guano de Isl: 29.89</td>
<td>90</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Vacuno</td>
<td>26.76</td>
<td>90</td>
<td>B</td>
</tr>
<tr>
<td>Humus</td>
<td>26.5</td>
<td>90</td>
<td>B</td>
</tr>
<tr>
<td>Bocashi</td>
<td>25.62</td>
<td>90</td>
<td>B</td>
</tr>
</tbody>
</table>

Medias con una letra común no son significativamente diferentes (p > 0.05)

Tarwi | Sustratos | Medias | n | Duncan |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Yunguyo</td>
<td>Guano de Isl: 30.7</td>
<td>30</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>SLP</td>
<td>Guano de Isl: 29.9</td>
<td>30</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Yunguyo</td>
<td>Vacuno</td>
<td>29.1</td>
<td>30</td>
<td>AB</td>
</tr>
<tr>
<td>SCG25</td>
<td>Guano de Isl: 29.07</td>
<td>30</td>
<td>AB</td>
<td></td>
</tr>
<tr>
<td>SCG25</td>
<td>Humus</td>
<td>27.9</td>
<td>30</td>
<td>ABC</td>
</tr>
<tr>
<td>SLP</td>
<td>Vacuno</td>
<td>27.63</td>
<td>30</td>
<td>ABC</td>
</tr>
<tr>
<td>SLP</td>
<td>Bocashi</td>
<td>27.57</td>
<td>30</td>
<td>ABC</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>Humus</td>
<td>26.03</td>
<td>30</td>
<td>BCD</td>
</tr>
<tr>
<td>SLP</td>
<td>Humus</td>
<td>25.57</td>
<td>30</td>
<td>BCD</td>
</tr>
<tr>
<td>SCG25</td>
<td>Bocashi</td>
<td>24.77</td>
<td>30</td>
<td>CD</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>Bocashi</td>
<td>24.53</td>
<td>30</td>
<td>CD</td>
</tr>
<tr>
<td>SCG25</td>
<td>Vacuno</td>
<td>23.53</td>
<td>30</td>
<td>D</td>
</tr>
</tbody>
</table>

Medias con una letra común no son significativamente diferentes (p > 0.05)
Tabla 40: Anova y test de Duncan para altura de planta a los 120 DDS.

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>R²</th>
<th>R² Aj</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alt120dds</td>
<td>360</td>
<td>0.28</td>
<td>0.26</td>
<td>17.03</td>
</tr>
</tbody>
</table>

Cuadro de Análisis de la Varianza (SC tipo III)

<table>
<thead>
<tr>
<th>F.V.</th>
<th>SC</th>
<th>gl</th>
<th>CM</th>
<th>F</th>
<th>p-valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo.</td>
<td>5053.85</td>
<td>13</td>
<td>388.76</td>
<td>10.59</td>
<td><0.0001</td>
</tr>
<tr>
<td>Bloque</td>
<td>1741.55</td>
<td>2</td>
<td>870.78</td>
<td>23.72</td>
<td><0.0001</td>
</tr>
<tr>
<td>Tarwi</td>
<td>762.65</td>
<td>2</td>
<td>381.32</td>
<td>10.39</td>
<td><0.0001</td>
</tr>
<tr>
<td>Sustratos</td>
<td>1805.83</td>
<td>3</td>
<td>601.94</td>
<td>16.39</td>
<td><0.0001</td>
</tr>
<tr>
<td>Tarwi*Sustratos</td>
<td>743.82</td>
<td>6</td>
<td>123.97</td>
<td>3.38</td>
<td>0.003</td>
</tr>
<tr>
<td>Error</td>
<td>12703.65</td>
<td>346</td>
<td>36.72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>17757.5</td>
<td>359</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tarwi</th>
<th>Medias</th>
<th>n</th>
<th>Duncan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yunguyo</td>
<td>37.5</td>
<td>120</td>
<td>A</td>
</tr>
<tr>
<td>SLP</td>
<td>35.28</td>
<td>120</td>
<td>B</td>
</tr>
<tr>
<td>SCG25</td>
<td>33.98</td>
<td>120</td>
<td>B</td>
</tr>
</tbody>
</table>

Medias con una letra común no son significativamente diferentes (p > 0.05)

<table>
<thead>
<tr>
<th>Sustratos</th>
<th>Medias</th>
<th>n</th>
<th>Duncan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guano de Isl: 39.27</td>
<td>90</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Vacuno</td>
<td>35.26</td>
<td>90</td>
<td>B</td>
</tr>
<tr>
<td>Humus</td>
<td>34.52</td>
<td>90</td>
<td>BC</td>
</tr>
<tr>
<td>Bocashi</td>
<td>33.29</td>
<td>90</td>
<td>C</td>
</tr>
</tbody>
</table>

Medias con una letra común no son significativamente diferentes (p > 0.05)

Test: Duncan Alfa=0.05
Error: 36.7158 gl: 346

<table>
<thead>
<tr>
<th>Tarwi</th>
<th>Sustratos</th>
<th>Medias</th>
<th>n</th>
<th>Duncan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yunguyo</td>
<td>Guano de Isl: 41.53</td>
<td>30</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Yunguyo</td>
<td>Vacuno</td>
<td>39.73</td>
<td>30</td>
<td>AB</td>
</tr>
<tr>
<td>SLP</td>
<td>Guano de Isl: 38.23</td>
<td>30</td>
<td>BC</td>
<td></td>
</tr>
<tr>
<td>SCG25</td>
<td>Guano de Isl: 38.03</td>
<td>30</td>
<td>BC</td>
<td></td>
</tr>
<tr>
<td>Yunguyo</td>
<td>Humus</td>
<td>35.33</td>
<td>30</td>
<td>CD</td>
</tr>
<tr>
<td>SLP</td>
<td>Bocashi</td>
<td>34.93</td>
<td>30</td>
<td>CDE</td>
</tr>
<tr>
<td>SCG25</td>
<td>Humus</td>
<td>34.83</td>
<td>30</td>
<td>CDE</td>
</tr>
<tr>
<td>SLP</td>
<td>Vacuno</td>
<td>34.53</td>
<td>30</td>
<td>DE</td>
</tr>
<tr>
<td>SLP</td>
<td>Humus</td>
<td>33.4</td>
<td>30</td>
<td>DE</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>Bocashi</td>
<td>33.4</td>
<td>30</td>
<td>DE</td>
</tr>
<tr>
<td>SCG25</td>
<td>Bocashi</td>
<td>31.53</td>
<td>30</td>
<td>E</td>
</tr>
<tr>
<td>SCG25</td>
<td>Vacuno</td>
<td>31.5</td>
<td>30</td>
<td>E</td>
</tr>
</tbody>
</table>

Medias con una letra común no son significativamente diferentes (p > 0.05)
Tabla 41: Anova y test de Duncan para altura de planta a los 210 DDS.

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>R²</th>
<th>R² Aj</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alt210dds co360</td>
<td>360</td>
<td>0.4</td>
<td>0.38</td>
<td>14.91</td>
</tr>
</tbody>
</table>

Cuadro de Análisis de la Varianza (SC tipo III)

<table>
<thead>
<tr>
<th>F.V.</th>
<th>SC</th>
<th>gl</th>
<th>CM</th>
<th>F</th>
<th>p-valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo.</td>
<td>15038.04</td>
<td>13</td>
<td>1156.77</td>
<td>17.59</td>
<td><0.0001</td>
</tr>
<tr>
<td>Bloque</td>
<td>9.41</td>
<td>2</td>
<td>4.7</td>
<td>0.07</td>
<td>0.931</td>
</tr>
<tr>
<td>Tarwi</td>
<td>311.24</td>
<td>2</td>
<td>155.62</td>
<td>2.37</td>
<td>0.0953</td>
</tr>
<tr>
<td>Sustratos</td>
<td>11438.7</td>
<td>3</td>
<td>3812.9</td>
<td>57.98</td>
<td><0.0001</td>
</tr>
<tr>
<td>Tarwi*Sustras</td>
<td>3278.69</td>
<td>6</td>
<td>546.45</td>
<td>8.31</td>
<td><0.0001</td>
</tr>
<tr>
<td>Error</td>
<td>22754.83</td>
<td>346</td>
<td>65.77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>37792.86</td>
<td>359</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tarwi

<table>
<thead>
<tr>
<th>Medias</th>
<th>n</th>
<th>Duncan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yunguyo</td>
<td>55.08</td>
<td>120</td>
</tr>
<tr>
<td>SLP</td>
<td>54.99</td>
<td>120</td>
</tr>
<tr>
<td>SCG25</td>
<td>53.07</td>
<td>120</td>
</tr>
</tbody>
</table>

Medias con una letra común no son significativamente diferentes (p > 0.05)

Sustratos

<table>
<thead>
<tr>
<th>Medias</th>
<th>n</th>
<th>Duncan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guano de Isl: 61.89</td>
<td>90</td>
<td>A</td>
</tr>
<tr>
<td>Bocashi</td>
<td>57.72</td>
<td>90</td>
</tr>
<tr>
<td>Humus</td>
<td>49.54</td>
<td>90</td>
</tr>
<tr>
<td>Vacuno</td>
<td>48.37</td>
<td>90</td>
</tr>
</tbody>
</table>

Medias con una letra común no son significativamente diferentes (p > 0.05)

Tarwi

<table>
<thead>
<tr>
<th>Sustratos</th>
<th>Medias</th>
<th>n</th>
<th>Duncan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yunguyo</td>
<td>Guano de Isl: 65.1</td>
<td>30</td>
<td>A</td>
</tr>
<tr>
<td>SLP</td>
<td>Guano de Isl: 63.4</td>
<td>30</td>
<td>A</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>Bocashi</td>
<td>61.1</td>
<td>30</td>
</tr>
<tr>
<td>SCG25</td>
<td>Bocashi</td>
<td>58.5</td>
<td>30</td>
</tr>
<tr>
<td>SCG25</td>
<td>Guano de Isl: 57.17</td>
<td>30</td>
<td>BC</td>
</tr>
<tr>
<td>SLP</td>
<td>Bocashi</td>
<td>53.57</td>
<td>30</td>
</tr>
<tr>
<td>SLP</td>
<td>Vacuno</td>
<td>53.47</td>
<td>30</td>
</tr>
<tr>
<td>SCG25</td>
<td>Humus</td>
<td>52.1</td>
<td>30</td>
</tr>
<tr>
<td>SLP</td>
<td>Humus</td>
<td>49.53</td>
<td>30</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>Vacuno</td>
<td>47.13</td>
<td>30</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>Humus</td>
<td>47</td>
<td>30</td>
</tr>
<tr>
<td>SCG25</td>
<td>Vacuno</td>
<td>44.5</td>
<td>30</td>
</tr>
</tbody>
</table>

Medias con una letra común no son significativamente diferentes (p > 0.05)
Tabla 42: Anova y test de Duncan al inicio de la floración 69 DDS.

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>R²</th>
<th>R² Aj</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>IF69 dds</td>
<td>36</td>
<td>0.5</td>
<td>0.21</td>
<td>22.99</td>
</tr>
</tbody>
</table>

Cuadro de Análisis de la Varianza (SC tipo III)

<table>
<thead>
<tr>
<th>F.V.</th>
<th>SC</th>
<th>gl</th>
<th>CM</th>
<th>F</th>
<th>p-valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo.</td>
<td>35.83</td>
<td>13</td>
<td>2.76</td>
<td>1.72</td>
<td>0.1257</td>
</tr>
<tr>
<td>Bloque</td>
<td>6.17</td>
<td>2</td>
<td>3.08</td>
<td>1.93</td>
<td>0.1691</td>
</tr>
<tr>
<td>Tarwi</td>
<td>15.17</td>
<td>2</td>
<td>7.58</td>
<td>4.74</td>
<td>0.0194</td>
</tr>
<tr>
<td>Sustratos</td>
<td>2.78</td>
<td>3</td>
<td>0.93</td>
<td>0.58</td>
<td>0.6348</td>
</tr>
<tr>
<td>Tarwi*Sustra</td>
<td>11.72</td>
<td>6</td>
<td>1.95</td>
<td>1.22</td>
<td>0.3326</td>
</tr>
<tr>
<td>Error</td>
<td>35.17</td>
<td>22</td>
<td>1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>71</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tarwi Medias

<table>
<thead>
<tr>
<th>Sustratos</th>
<th>Medias n</th>
<th>Duncan</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCG25</td>
<td>6.33</td>
<td>12</td>
</tr>
<tr>
<td>SLP</td>
<td>5.42</td>
<td>12</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>4.75</td>
<td>12</td>
</tr>
</tbody>
</table>

Medias con una letra común no son significativamente diferentes (p > 0.05)

Sustratos Medias

Guano de isl	5.89	9	A
Vacuno	5.56	9	A
Bocashi	5.44	9	A
Humus	5.11	9	A

Medias con una letra común no son significativamente diferentes (p > 0.05)

Tarwi Sustratos Medias

<table>
<thead>
<tr>
<th>Sustratos</th>
<th>Medias n</th>
<th>Duncan</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCG25</td>
<td>Guano de isl</td>
<td>7</td>
</tr>
<tr>
<td>SCG25</td>
<td>Humus</td>
<td>6.67</td>
</tr>
<tr>
<td>SCG25</td>
<td>Bocashi</td>
<td>6.33</td>
</tr>
<tr>
<td>SLP</td>
<td>Guano de isl</td>
<td>6</td>
</tr>
<tr>
<td>SLP</td>
<td>Vacuno</td>
<td>6</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>Vacuno</td>
<td>5.33</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>Bocashi</td>
<td>5.33</td>
</tr>
<tr>
<td>SLP</td>
<td>Guano de isl</td>
<td>5.33</td>
</tr>
<tr>
<td>SLP</td>
<td>Humus</td>
<td>5</td>
</tr>
<tr>
<td>SLP</td>
<td>Bocashi</td>
<td>4.67</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>Guano de isl</td>
<td>4.67</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>Humus</td>
<td>3.67</td>
</tr>
</tbody>
</table>

Medias con una letra común no son significativamente diferentes (p > 0.05)
Tabla 43: Anova y test de Duncan al inicio de la floración lateral 102 DDS

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>R²</th>
<th>R² Aj</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>FL130 dds</td>
<td>36</td>
<td>0.89</td>
<td>0.82</td>
<td>20.56</td>
</tr>
</tbody>
</table>

Cuadro de Análisis de la Varianza (SC tipo III)

<table>
<thead>
<tr>
<th>F.V.</th>
<th>SC</th>
<th>gl</th>
<th>CM</th>
<th>F</th>
<th>p-valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo.</td>
<td>152.17</td>
<td>13</td>
<td>11.71</td>
<td>13.67</td>
<td><0.0001</td>
</tr>
<tr>
<td>Bloque</td>
<td>1.17</td>
<td>2</td>
<td>0.58</td>
<td>0.68</td>
<td>0.5163</td>
</tr>
<tr>
<td>Tarwi</td>
<td>13.17</td>
<td>2</td>
<td>6.58</td>
<td>7.69</td>
<td>0.0029</td>
</tr>
<tr>
<td>Sustratos</td>
<td>5.67</td>
<td>3</td>
<td>1.89</td>
<td>2.21</td>
<td>0.1159</td>
</tr>
<tr>
<td>Tarwi*Sustratos</td>
<td>132.17</td>
<td>6</td>
<td>22.03</td>
<td>25.73</td>
<td><0.0001</td>
</tr>
<tr>
<td>Error</td>
<td>18.83</td>
<td>22</td>
<td>0.86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>171</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tarwi</th>
<th>Medias</th>
<th>n</th>
<th>Duncan</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCG25</td>
<td>5.33</td>
<td>12</td>
<td>A</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>4.25</td>
<td>12</td>
<td>B</td>
</tr>
<tr>
<td>SLP</td>
<td>3.92</td>
<td>12</td>
<td>B</td>
</tr>
</tbody>
</table>

Medias con una letra común no son significativamente diferentes (p > 0.05)

<table>
<thead>
<tr>
<th>Sustratos</th>
<th>Medias</th>
<th>n</th>
<th>Duncan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bocashi</td>
<td>5</td>
<td>9</td>
<td>A</td>
</tr>
<tr>
<td>Guano de isl.</td>
<td>4.78</td>
<td>9</td>
<td>A</td>
</tr>
<tr>
<td>Humus</td>
<td>4.11</td>
<td>9</td>
<td>A</td>
</tr>
<tr>
<td>Vacuno</td>
<td>4.11</td>
<td>9</td>
<td>A</td>
</tr>
</tbody>
</table>

Medias con una letra común no son significativamente diferentes (p > 0.05)

<table>
<thead>
<tr>
<th>Tarwi</th>
<th>Sustratos</th>
<th>Medias</th>
<th>n</th>
<th>Duncan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yunguyo</td>
<td>Bocashi</td>
<td>7.33</td>
<td>3</td>
<td>A</td>
</tr>
<tr>
<td>SCG25</td>
<td>Guano de isl.</td>
<td>6.67</td>
<td>3</td>
<td>A</td>
</tr>
<tr>
<td>SCG25</td>
<td>Humus</td>
<td>6.33</td>
<td>3</td>
<td>A</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>Vacuno</td>
<td>6</td>
<td>3</td>
<td>A</td>
</tr>
<tr>
<td>SLP</td>
<td>Guano de isl.</td>
<td>6</td>
<td>3</td>
<td>A</td>
</tr>
<tr>
<td>SCG25</td>
<td>Bocashi</td>
<td>6</td>
<td>3</td>
<td>A</td>
</tr>
<tr>
<td>SLP</td>
<td>Vacuno</td>
<td>4</td>
<td>3</td>
<td>B</td>
</tr>
<tr>
<td>SLP</td>
<td>Humus</td>
<td>4</td>
<td>3</td>
<td>B</td>
</tr>
<tr>
<td>SCG25</td>
<td>Vacuno</td>
<td>2.33</td>
<td>3</td>
<td>C</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>Humus</td>
<td>2</td>
<td>3</td>
<td>C</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>Guano de isl.</td>
<td>1.67</td>
<td>3</td>
<td>C</td>
</tr>
<tr>
<td>SLP</td>
<td>Bocashi</td>
<td>1.67</td>
<td>3</td>
<td>C</td>
</tr>
</tbody>
</table>

Medias con una letra común no son significativamente diferentes (p > 0.05)
Tabla 44. Anova y test de Duncan. Días al inicio de la formación de vainas. Eje central 82 dds.

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>R²</th>
<th>R² Aj</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC82dds</td>
<td>36</td>
<td>0.8</td>
<td>0.68</td>
<td>54.94</td>
</tr>
</tbody>
</table>

Cuadro de Análisis de la Varianza (SC tipo III)

<table>
<thead>
<tr>
<th>F.V.</th>
<th>SC</th>
<th>gl</th>
<th>CM</th>
<th>F</th>
<th>p-valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo.</td>
<td>24.69</td>
<td>13</td>
<td>1.9</td>
<td>6.66</td>
<td>0.0001</td>
</tr>
<tr>
<td>Bloque</td>
<td>0.39</td>
<td>2</td>
<td>0.19</td>
<td>0.68</td>
<td>0.5163</td>
</tr>
<tr>
<td>Tarwi</td>
<td>19.06</td>
<td>2</td>
<td>9.53</td>
<td>33.39</td>
<td><0.0001</td>
</tr>
<tr>
<td>Sustratos</td>
<td>0.75</td>
<td>3</td>
<td>0.25</td>
<td>0.88</td>
<td>0.4685</td>
</tr>
<tr>
<td>Tarwi*Sustratos</td>
<td>4.5</td>
<td>6</td>
<td>0.75</td>
<td>2.63</td>
<td>0.0448</td>
</tr>
<tr>
<td>Error</td>
<td>6.28</td>
<td>22</td>
<td>0.29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>30.97</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tarwi

<table>
<thead>
<tr>
<th>Medias</th>
<th>n</th>
<th>Duncan</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLP</td>
<td>2</td>
<td>12 A</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>0.5</td>
<td>12 B</td>
</tr>
<tr>
<td>SCG25</td>
<td>0.42</td>
<td>12 B</td>
</tr>
</tbody>
</table>

Medias con una letra común no son significativamente diferentes (p > 0.05)

Sustratos

<table>
<thead>
<tr>
<th>Medias</th>
<th>n</th>
<th>Duncan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humus</td>
<td>1.11</td>
<td>9 A</td>
</tr>
<tr>
<td>Guano de isl</td>
<td>1.11</td>
<td>9 A</td>
</tr>
<tr>
<td>Bocashi</td>
<td>0.89</td>
<td>9 A</td>
</tr>
<tr>
<td>Vacuno</td>
<td>0.78</td>
<td>9 A</td>
</tr>
</tbody>
</table>

Medias con una letra común no son significativamente diferentes (p > 0.05)

Tarwi Sustratos

<table>
<thead>
<tr>
<th>Medias</th>
<th>n</th>
<th>Duncan</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLP Guano de isl</td>
<td>2.67</td>
<td>3 A</td>
</tr>
<tr>
<td>SLP Bocashi</td>
<td>2</td>
<td>3 AB</td>
</tr>
<tr>
<td>SLP Vacuno</td>
<td>1.67</td>
<td>3 B</td>
</tr>
<tr>
<td>SLP Humus</td>
<td>1.67</td>
<td>3 B</td>
</tr>
<tr>
<td>Yunguyo Humus</td>
<td>1.33</td>
<td>3 BC</td>
</tr>
<tr>
<td>SCG25 Guano de isl</td>
<td>0.67</td>
<td>3 CD</td>
</tr>
<tr>
<td>SCG25 Humus</td>
<td>0.33</td>
<td>3 CD</td>
</tr>
<tr>
<td>SCG25 Bocashi</td>
<td>0.33</td>
<td>3 CD</td>
</tr>
<tr>
<td>Yunguyo Vacuno</td>
<td>0.33</td>
<td>3 CD</td>
</tr>
<tr>
<td>Yunguyo Bocashi</td>
<td>0.33</td>
<td>3 CD</td>
</tr>
<tr>
<td>Yunguyo Guano de isl</td>
<td>0</td>
<td>3 D</td>
</tr>
</tbody>
</table>

Medias con una letra común no son significativamente diferentes (p > 0.05)

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>R^2</th>
<th>R^2 Aj</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>EL131dds</td>
<td>36</td>
<td>0.97</td>
<td>0.95</td>
<td>17.11</td>
</tr>
</tbody>
</table>

Cuadro de Análisis de la Varianza (SC tipo III)

<table>
<thead>
<tr>
<th>F.V.</th>
<th>SC</th>
<th>gl</th>
<th>CM</th>
<th>F</th>
<th>p-valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo</td>
<td>336.53</td>
<td>13</td>
<td>25.89</td>
<td>54.53</td>
<td><0.0001</td>
</tr>
<tr>
<td>Bloque</td>
<td>0.89</td>
<td>2</td>
<td>0.44</td>
<td>0.94</td>
<td>0.4072</td>
</tr>
<tr>
<td>Tarwi</td>
<td>73.72</td>
<td>2</td>
<td>36.86</td>
<td>77.64</td>
<td><0.0001</td>
</tr>
<tr>
<td>Sustratos</td>
<td>34.53</td>
<td>3</td>
<td>11.51</td>
<td>24.24</td>
<td><0.0001</td>
</tr>
<tr>
<td>Tarwi*Sustratos</td>
<td>227.39</td>
<td>6</td>
<td>37.9</td>
<td>79.83</td>
<td><0.0001</td>
</tr>
<tr>
<td>Error</td>
<td>10.44</td>
<td>22</td>
<td>0.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>346.97</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tarwi</th>
<th>Medias</th>
<th>n</th>
<th>Duncan</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCG25</td>
<td>5.83</td>
<td>12</td>
<td>A</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>3.92</td>
<td>12</td>
<td>B</td>
</tr>
<tr>
<td>SLP</td>
<td>2.33</td>
<td>12</td>
<td>C</td>
</tr>
</tbody>
</table>

Medias con una letra común no son significativamente diferentes (p > 0.05)

<table>
<thead>
<tr>
<th>Sustratos</th>
<th>Medias</th>
<th>n</th>
<th>Duncan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bocashi</td>
<td>5</td>
<td>9</td>
<td>A</td>
</tr>
<tr>
<td>Guano de isl.</td>
<td>5</td>
<td>9</td>
<td>A</td>
</tr>
<tr>
<td>Vacuno</td>
<td>3.22</td>
<td>9</td>
<td>B</td>
</tr>
<tr>
<td>Humus</td>
<td>2.89</td>
<td>9</td>
<td>B</td>
</tr>
</tbody>
</table>

Medias con una letra común no son significativamente diferentes (p > 0.05)

<table>
<thead>
<tr>
<th>Tarwi</th>
<th>Sustratos</th>
<th>Medias</th>
<th>n</th>
<th>Duncan</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCG25</td>
<td>Bocashi</td>
<td>8</td>
<td>3</td>
<td>A</td>
</tr>
<tr>
<td>SCG25</td>
<td>Humus</td>
<td>7.67</td>
<td>3</td>
<td>AB</td>
</tr>
<tr>
<td>SLP</td>
<td>Guano de isl.</td>
<td>6.67</td>
<td>3</td>
<td>BC</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>Bocashi</td>
<td>6.67</td>
<td>3</td>
<td>BC</td>
</tr>
<tr>
<td>SCG25</td>
<td>Guano de isl.</td>
<td>6.67</td>
<td>3</td>
<td>BC</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>Vacuno</td>
<td>6.33</td>
<td>3</td>
<td>C</td>
</tr>
<tr>
<td>SLP</td>
<td>Vacuno</td>
<td>2.33</td>
<td>3</td>
<td>D</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>Guano de isl.</td>
<td>1.67</td>
<td>3</td>
<td>DE</td>
</tr>
<tr>
<td>SCG25</td>
<td>Vacuno</td>
<td>1</td>
<td>3</td>
<td>EF</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>Humus</td>
<td>1</td>
<td>3</td>
<td>EF</td>
</tr>
<tr>
<td>SLP</td>
<td>Bocashi</td>
<td>0.33</td>
<td>3</td>
<td>F</td>
</tr>
<tr>
<td>SLP</td>
<td>Humus</td>
<td>0</td>
<td>3</td>
<td>F</td>
</tr>
</tbody>
</table>

Medias con una letra común no son significativamente diferentes (p > 0.05)
Tabla 46: Anova y test de Duncan para días a la madurez fisiológica. 166 dds

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>R²</th>
<th>R² Aj</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>MF166dds</td>
<td>36</td>
<td>0.82</td>
<td>0.72</td>
<td>6.64</td>
</tr>
</tbody>
</table>

Cuadro de Análisis de la Varianza (SC tipo III)

<table>
<thead>
<tr>
<th>F.V.</th>
<th>SC</th>
<th>gl</th>
<th>CM</th>
<th>F</th>
<th>p-valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo.</td>
<td>20.03</td>
<td>13</td>
<td>1.54</td>
<td>7.92</td>
<td><0.0001</td>
</tr>
<tr>
<td>Bloque</td>
<td>0.39</td>
<td>2</td>
<td>0.19</td>
<td>1</td>
<td>0.384</td>
</tr>
<tr>
<td>Tarwi</td>
<td>2.39</td>
<td>2</td>
<td>1.19</td>
<td>6.14</td>
<td>0.0076</td>
</tr>
<tr>
<td>Sustratos</td>
<td>2.75</td>
<td>3</td>
<td>0.92</td>
<td>4.71</td>
<td>0.0109</td>
</tr>
<tr>
<td>Tarwi*Sustratos</td>
<td>14.5</td>
<td>6</td>
<td>2.42</td>
<td>12.43</td>
<td><0.0001</td>
</tr>
<tr>
<td>Error</td>
<td>4.28</td>
<td>22</td>
<td>0.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>24.31</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Medias con una letra común no son significativamente diferentes (p > 0.05)

<table>
<thead>
<tr>
<th>Tarwi</th>
<th>Medias</th>
<th>n</th>
<th>Duncan</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCG25</td>
<td>7</td>
<td>12</td>
<td>A</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>6.5</td>
<td>12</td>
<td>B</td>
</tr>
<tr>
<td>SLP</td>
<td>6.42</td>
<td>12</td>
<td>B</td>
</tr>
</tbody>
</table>

Medias con una letra común no son significativamente diferentes (p > 0.05)

<table>
<thead>
<tr>
<th>Sustratos</th>
<th>Medias</th>
<th>n</th>
<th>Duncan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guano de isl</td>
<td>6.89</td>
<td>9</td>
<td>A</td>
</tr>
<tr>
<td>Bocashi</td>
<td>6.89</td>
<td>9</td>
<td>A</td>
</tr>
<tr>
<td>Humus</td>
<td>6.56</td>
<td>9</td>
<td>AB</td>
</tr>
<tr>
<td>Vacuno</td>
<td>6.22</td>
<td>9</td>
<td>B</td>
</tr>
</tbody>
</table>

Medias con una letra común no son significativamente diferentes (p > 0.05)

<table>
<thead>
<tr>
<th>Tarwi</th>
<th>Sustratos</th>
<th>Medias</th>
<th>n</th>
<th>Duncan</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCG25</td>
<td>Bocashi</td>
<td>8</td>
<td>3</td>
<td>A</td>
</tr>
<tr>
<td>SLP</td>
<td>Guano de isl</td>
<td>7.33</td>
<td>3</td>
<td>AB</td>
</tr>
<tr>
<td>SCG25</td>
<td>Humus</td>
<td>7.33</td>
<td>3</td>
<td>AB</td>
</tr>
<tr>
<td>SCG25</td>
<td>Guano de isl</td>
<td>7.33</td>
<td>3</td>
<td>AB</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>Vacuno</td>
<td>7</td>
<td>3</td>
<td>BC</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>Bocashi</td>
<td>6.67</td>
<td>3</td>
<td>BCD</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>Humus</td>
<td>6.33</td>
<td>3</td>
<td>CD</td>
</tr>
<tr>
<td>SLP</td>
<td>Vacuno</td>
<td>6.33</td>
<td>3</td>
<td>CD</td>
</tr>
<tr>
<td>SLP</td>
<td>Bocashi</td>
<td>6</td>
<td>3</td>
<td>DE</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>Guano de isl</td>
<td>6</td>
<td>3</td>
<td>DE</td>
</tr>
<tr>
<td>SLP</td>
<td>Humus</td>
<td>6</td>
<td>3</td>
<td>DE</td>
</tr>
<tr>
<td>SCG25</td>
<td>Vacuno</td>
<td>5.33</td>
<td>3</td>
<td>E</td>
</tr>
</tbody>
</table>
Tabla 47: Anova y test de Duncan para días a la madurez fisiológica. 190 dds

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>R^2</th>
<th>R^2 Aj</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>MF190dds</td>
<td>36</td>
<td>0.72</td>
<td>0.56</td>
<td>7.52</td>
</tr>
</tbody>
</table>

Cuadro de Análisis de la Varianza (SC tipo III)

<table>
<thead>
<tr>
<th>F.V.</th>
<th>SC</th>
<th>gl</th>
<th>CM</th>
<th>F</th>
<th>p-valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo.</td>
<td>25.94</td>
<td>13</td>
<td>2</td>
<td>4.42</td>
<td>0.0011</td>
</tr>
<tr>
<td>Bloque</td>
<td>0.06</td>
<td>2</td>
<td>0.03</td>
<td>0.06</td>
<td>0.9406</td>
</tr>
<tr>
<td>Tarwi</td>
<td>1.72</td>
<td>2</td>
<td>0.86</td>
<td>1.91</td>
<td>0.1726</td>
</tr>
<tr>
<td>Sustratos</td>
<td>3.67</td>
<td>3</td>
<td>1.22</td>
<td>2.7</td>
<td>0.0702</td>
</tr>
<tr>
<td>Tarwi*Sustratos</td>
<td>20.5</td>
<td>6</td>
<td>3.42</td>
<td>7.56</td>
<td>0.0002</td>
</tr>
<tr>
<td>Error</td>
<td>9.94</td>
<td>22</td>
<td>0.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>35.89</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tarwi</th>
<th>Medias</th>
<th>n</th>
<th>Duncan</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCG25</td>
<td>9.25</td>
<td>12</td>
<td>A</td>
</tr>
<tr>
<td>SLP</td>
<td>8.83</td>
<td>12</td>
<td>A</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>8.75</td>
<td>12</td>
<td>A</td>
</tr>
</tbody>
</table>

Medias con una letra común no son significativamente diferentes (p > 0.05)

<table>
<thead>
<tr>
<th>Sustratos</th>
<th>Medias</th>
<th>n</th>
<th>Duncan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guano de isl: 9.44</td>
<td>9</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Humus</td>
<td>8.89</td>
<td>9</td>
<td>AB</td>
</tr>
<tr>
<td>Bocashi</td>
<td>8.89</td>
<td>9</td>
<td>AB</td>
</tr>
<tr>
<td>Vacuno</td>
<td>8.56</td>
<td>9</td>
<td>B</td>
</tr>
</tbody>
</table>

Medias con una letra común no son significativamente diferentes (p > 0.05)

<table>
<thead>
<tr>
<th>Tarwi</th>
<th>Sustratos</th>
<th>Medias</th>
<th>n</th>
<th>Duncan</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLP</td>
<td>Guano de isl:</td>
<td>10</td>
<td>3</td>
<td>A</td>
</tr>
<tr>
<td>SCG25</td>
<td>Guano de isl:</td>
<td>10</td>
<td>3</td>
<td>A</td>
</tr>
<tr>
<td>SCG25</td>
<td>Bocashi</td>
<td>10</td>
<td>3</td>
<td>A</td>
</tr>
<tr>
<td>SCG25</td>
<td>Humus</td>
<td>9.67</td>
<td>3</td>
<td>A</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>Vacuno</td>
<td>9.33</td>
<td>3</td>
<td>AB</td>
</tr>
<tr>
<td>SLP</td>
<td>Vacuno</td>
<td>9</td>
<td>3</td>
<td>ABC</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>Humus</td>
<td>9</td>
<td>3</td>
<td>ABC</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>Guano de isl:</td>
<td>8.33</td>
<td>3</td>
<td>BCD</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>Bocashi</td>
<td>8.33</td>
<td>3</td>
<td>BCD</td>
</tr>
<tr>
<td>SLP</td>
<td>Bocashi</td>
<td>8.33</td>
<td>3</td>
<td>BCD</td>
</tr>
<tr>
<td>SLP</td>
<td>Humus</td>
<td>8</td>
<td>3</td>
<td>CD</td>
</tr>
<tr>
<td>SCG25</td>
<td>Vacuno</td>
<td>7.33</td>
<td>3</td>
<td>D</td>
</tr>
</tbody>
</table>

Medias con una letra común no son significativamente diferentes (p > 0.05)
Tabla 48: Anova y test de Duncan del número de vainas por planta.

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>R²</th>
<th>R² Aj</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vainas</td>
<td>360</td>
<td>0.77</td>
<td>0.76</td>
<td>19.29</td>
</tr>
</tbody>
</table>

Cuadro de Análisis de la Varianza (SC tipo III)

<table>
<thead>
<tr>
<th>F.V.</th>
<th>SC</th>
<th>gl</th>
<th>CM</th>
<th>F</th>
<th>p-valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo.</td>
<td>6794.12</td>
<td>13</td>
<td>522.62</td>
<td>89.45</td>
<td><0.0001</td>
</tr>
<tr>
<td>Bloque</td>
<td>73.89</td>
<td>2</td>
<td>36.94</td>
<td>6.32</td>
<td>0.002</td>
</tr>
<tr>
<td>Tarwi</td>
<td>119.87</td>
<td>2</td>
<td>59.94</td>
<td>10.26</td>
<td><0.0001</td>
</tr>
<tr>
<td>Sustratos</td>
<td>4287.21</td>
<td>3</td>
<td>1429.07</td>
<td>244.59</td>
<td><0.0001</td>
</tr>
<tr>
<td>Tarwi*Sustratos</td>
<td>2313.15</td>
<td>6</td>
<td>385.53</td>
<td>65.99</td>
<td><0.0001</td>
</tr>
<tr>
<td>Error</td>
<td>2021.54</td>
<td>346</td>
<td>5.84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>8815.66</td>
<td>359</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tarwi</th>
<th>Medias</th>
<th>n</th>
<th>Duncan</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCG25</td>
<td>13.2</td>
<td>120</td>
<td>A</td>
</tr>
<tr>
<td>SLP</td>
<td>12.6</td>
<td>120</td>
<td>A</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>11.79</td>
<td>120</td>
<td>B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sustratos</th>
<th>Medias</th>
<th>n</th>
<th>Duncan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guano de Isl</td>
<td>17.94</td>
<td>90</td>
<td>A</td>
</tr>
<tr>
<td>Bocashi</td>
<td>12.98</td>
<td>90</td>
<td>B</td>
</tr>
<tr>
<td>Humus</td>
<td>10.29</td>
<td>90</td>
<td>C</td>
</tr>
<tr>
<td>Vacuno</td>
<td>8.91</td>
<td>90</td>
<td>D</td>
</tr>
</tbody>
</table>

Medias con una letra común no son significativamente diferentes (p > 0.05)

<table>
<thead>
<tr>
<th>Tarwi</th>
<th>Sustratos</th>
<th>Medias</th>
<th>n</th>
<th>Duncan</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCG25</td>
<td>Guano de Isl</td>
<td>22.63</td>
<td>30</td>
<td>A</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>Guano de Isl</td>
<td>17.47</td>
<td>30</td>
<td>B</td>
</tr>
<tr>
<td>SLP</td>
<td>Humus</td>
<td>15.33</td>
<td>30</td>
<td>C</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>Bocashi</td>
<td>14.03</td>
<td>30</td>
<td>D</td>
</tr>
<tr>
<td>SLP</td>
<td>Guano de Isl</td>
<td>13.73</td>
<td>30</td>
<td>D</td>
</tr>
<tr>
<td>SCG25</td>
<td>Bocashi</td>
<td>12.83</td>
<td>30</td>
<td>DE</td>
</tr>
<tr>
<td>SLP</td>
<td>Bocashi</td>
<td>12.07</td>
<td>30</td>
<td>E</td>
</tr>
<tr>
<td>SLP</td>
<td>Vacuno</td>
<td>9.27</td>
<td>30</td>
<td>F</td>
</tr>
<tr>
<td>SCG25</td>
<td>Vacuno</td>
<td>8.97</td>
<td>30</td>
<td>F</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>Vacuno</td>
<td>8.5</td>
<td>30</td>
<td>F</td>
</tr>
<tr>
<td>SCG25</td>
<td>Humus</td>
<td>8.37</td>
<td>30</td>
<td>FG</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>Humus</td>
<td>7.17</td>
<td>30</td>
<td>G</td>
</tr>
</tbody>
</table>

Medias con una letra común no son significativamente diferentes (p > 0.05)
Tabla 49: Anova y test de Duncan de la longitud de vainas por planta.

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>R^2</th>
<th>R^2 Aj</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>PomedioLV</td>
<td>360</td>
<td>0.24</td>
<td>0.21</td>
<td>10.87</td>
</tr>
</tbody>
</table>

Cuadro de Análisis de la Varianza (SC tipo III)

<table>
<thead>
<tr>
<th>F.V.</th>
<th>SC</th>
<th>gl</th>
<th>CM</th>
<th>F</th>
<th>p-valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo</td>
<td>34.09</td>
<td>13</td>
<td>2.62</td>
<td>8.32</td>
<td><0.0001</td>
</tr>
<tr>
<td>Bloque</td>
<td>8.5</td>
<td>2</td>
<td>4.25</td>
<td>13.48</td>
<td><0.0001</td>
</tr>
<tr>
<td>Tarwi</td>
<td>2.13</td>
<td>2</td>
<td>1.06</td>
<td>3.37</td>
<td>0.0355</td>
</tr>
<tr>
<td>Sustratos</td>
<td>9.56</td>
<td>3</td>
<td>3.19</td>
<td>10.11</td>
<td><0.0001</td>
</tr>
<tr>
<td>Tarwi*Sustra</td>
<td>13.91</td>
<td>6</td>
<td>2.32</td>
<td>7.35</td>
<td><0.0001</td>
</tr>
<tr>
<td>Error</td>
<td>109.1</td>
<td>346</td>
<td>0.32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>143.2</td>
<td>359</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Medias con una letra común no son significativamente diferentes ($p > 0.05$)

Tarwi

<table>
<thead>
<tr>
<th>Medidas</th>
<th>n</th>
<th>Duncan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yunguyo</td>
<td>5.23</td>
<td>120 A</td>
</tr>
<tr>
<td>SLP</td>
<td>5.22</td>
<td>120 A</td>
</tr>
<tr>
<td>SCG25</td>
<td>5.06</td>
<td>120 B</td>
</tr>
</tbody>
</table>

Sustratos

<table>
<thead>
<tr>
<th>Medidas</th>
<th>n</th>
<th>Duncan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guano de Isla</td>
<td>5.43</td>
<td>90 A</td>
</tr>
<tr>
<td>Bocashi</td>
<td>5.16</td>
<td>90 B</td>
</tr>
<tr>
<td>Vacuno</td>
<td>5.11</td>
<td>90 BC</td>
</tr>
<tr>
<td>Humus</td>
<td>4.98</td>
<td>90 C</td>
</tr>
</tbody>
</table>

Tarwi*Sustratos

<table>
<thead>
<tr>
<th>Medidas</th>
<th>n</th>
<th>Duncan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yunguyo Guano de Isla</td>
<td>5.88</td>
<td>30 A</td>
</tr>
<tr>
<td>SLP Guano de Isla</td>
<td>5.48</td>
<td>30 B</td>
</tr>
<tr>
<td>SLP Vacuno</td>
<td>5.26</td>
<td>30 BC</td>
</tr>
<tr>
<td>SLP Bocashi</td>
<td>5.19</td>
<td>30 BCD</td>
</tr>
<tr>
<td>Yunguyo Bocashi</td>
<td>5.17</td>
<td>30 CD</td>
</tr>
<tr>
<td>SCG25 Vacuno</td>
<td>5.13</td>
<td>30 CD</td>
</tr>
<tr>
<td>SCG25 Bocashi</td>
<td>5.11</td>
<td>30 CD</td>
</tr>
<tr>
<td>SCG25 Humus</td>
<td>5.08</td>
<td>30 CD</td>
</tr>
<tr>
<td>Yunguyo Vacuno</td>
<td>4.95</td>
<td>30 CD</td>
</tr>
<tr>
<td>Yunguyo Humus</td>
<td>4.93</td>
<td>30 CD</td>
</tr>
<tr>
<td>SLP Humus</td>
<td>4.93</td>
<td>30 CD</td>
</tr>
<tr>
<td>SCG25 Guano de Isla</td>
<td>4.92</td>
<td>30 D</td>
</tr>
</tbody>
</table>

Medias con una letra común no son significativamente diferentes ($p > 0.05$)
Tabla 50: Anova y test de Duncan del número de granos por vaina.

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>R²</th>
<th>R² Aj</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>PomedioNGr</td>
<td>360</td>
<td>0.23</td>
<td>0.21</td>
<td>19.1</td>
</tr>
</tbody>
</table>

Cuadro de Análisis de la Varianza (SC tipo III)

<table>
<thead>
<tr>
<th>F.V.</th>
<th>SC</th>
<th>gl</th>
<th>CM</th>
<th>F</th>
<th>p-valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo</td>
<td>21.61</td>
<td>13</td>
<td>1.66</td>
<td>8.13</td>
<td><0.0001</td>
</tr>
<tr>
<td>Bloque</td>
<td>4.48</td>
<td>2</td>
<td>2.24</td>
<td>10.96</td>
<td><0.0001</td>
</tr>
<tr>
<td>Tarwi</td>
<td>0.14</td>
<td>2</td>
<td>0.07</td>
<td>0.35</td>
<td>0.7054</td>
</tr>
<tr>
<td>Sustratos</td>
<td>11.47</td>
<td>3</td>
<td>3.82</td>
<td>18.69</td>
<td><0.0001</td>
</tr>
<tr>
<td>Tarwi*Sustrats</td>
<td>5.52</td>
<td>6</td>
<td>0.92</td>
<td>4.5</td>
<td>0.0002</td>
</tr>
<tr>
<td>Error</td>
<td>70.76</td>
<td>346</td>
<td>0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>92.37</td>
<td>359</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tarwi</th>
<th>Medias</th>
<th>n</th>
<th>Duncan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yunguyo</td>
<td>2.39</td>
<td>120</td>
<td>A</td>
</tr>
<tr>
<td>SCG25</td>
<td>2.36</td>
<td>120</td>
<td>A</td>
</tr>
<tr>
<td>SLP</td>
<td>2.35</td>
<td>120</td>
<td>A</td>
</tr>
</tbody>
</table>

Medias con una letra común no son significativamente diferentes (p > 0.05)

<table>
<thead>
<tr>
<th>Sustratos</th>
<th>Medias</th>
<th>n</th>
<th>Duncan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guano de Isl: 2.65</td>
<td>90</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Bocashi</td>
<td>2.34</td>
<td>90</td>
<td>B</td>
</tr>
<tr>
<td>Vacuno</td>
<td>2.33</td>
<td>90</td>
<td>B</td>
</tr>
<tr>
<td>Humus</td>
<td>2.15</td>
<td>90</td>
<td>C</td>
</tr>
</tbody>
</table>

Medias con una letra común no son significativamente diferentes (p > 0.05)

<table>
<thead>
<tr>
<th>Tarwi</th>
<th>Sustratos</th>
<th>Medias</th>
<th>n</th>
<th>Duncan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yunguyo</td>
<td>Guano de Isl: 2.94</td>
<td>30</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>SLP</td>
<td>Guano de Isl: 2.53</td>
<td>30</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>SCG25</td>
<td>Guano de Isl: 2.47</td>
<td>30</td>
<td>BC</td>
<td></td>
</tr>
<tr>
<td>SCG25</td>
<td>Vacuno</td>
<td>2.42</td>
<td>30</td>
<td>BC</td>
</tr>
<tr>
<td>SLP</td>
<td>Bocashi</td>
<td>2.39</td>
<td>30</td>
<td>BC</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>Bocashi</td>
<td>2.32</td>
<td>30</td>
<td>BC</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>Vacuno</td>
<td>2.32</td>
<td>30</td>
<td>BC</td>
</tr>
<tr>
<td>SCG25</td>
<td>Bocashi</td>
<td>2.3</td>
<td>30</td>
<td>BC</td>
</tr>
<tr>
<td>SCG25</td>
<td>Humus</td>
<td>2.26</td>
<td>30</td>
<td>C</td>
</tr>
<tr>
<td>SLP</td>
<td>Vacuno</td>
<td>2.25</td>
<td>30</td>
<td>C</td>
</tr>
<tr>
<td>SLP</td>
<td>Humus</td>
<td>2.21</td>
<td>30</td>
<td>CD</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>Humus</td>
<td>1.99</td>
<td>30</td>
<td>D</td>
</tr>
</tbody>
</table>

Medias con una letra común no son significativamente diferentes (p > 0.05)
Tabla 51: Anova y test de Duncan del rendimiento de grano seco en gramos por planta.

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>R²</th>
<th>R² Aj</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>RendGS</td>
<td>360</td>
<td>0.68</td>
<td>0.67</td>
<td>24.51</td>
</tr>
</tbody>
</table>

Cuadro de Análisis de la Varianza (SC tipo III)

<table>
<thead>
<tr>
<th>F.V.</th>
<th>SC</th>
<th>gl</th>
<th>CM</th>
<th>F</th>
<th>p-valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo.</td>
<td>1313.11</td>
<td>13</td>
<td>101.01</td>
<td>56</td>
<td><0.0001</td>
</tr>
<tr>
<td>Bloque</td>
<td>9.88</td>
<td>2</td>
<td>4.94</td>
<td>2.74</td>
<td>0.066</td>
</tr>
<tr>
<td>Tarwi</td>
<td>1.48</td>
<td>2</td>
<td>0.74</td>
<td>0.41</td>
<td>0.6647</td>
</tr>
<tr>
<td>Sustratos</td>
<td>1058.96</td>
<td>3</td>
<td>352.99</td>
<td>195.7</td>
<td><0.0001</td>
</tr>
<tr>
<td>Tarwi*Sustratos</td>
<td>242.79</td>
<td>6</td>
<td>40.46</td>
<td>22.43</td>
<td><0.0001</td>
</tr>
<tr>
<td>Error</td>
<td>624.07</td>
<td>346</td>
<td>1.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1937.18</td>
<td>359</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tarwi</th>
<th>Medias</th>
<th>n</th>
<th>Duncan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yunguyo</td>
<td>5.57</td>
<td>120</td>
<td>A</td>
</tr>
<tr>
<td>SLP</td>
<td>5.45</td>
<td>120</td>
<td>A</td>
</tr>
<tr>
<td>SCG25</td>
<td>5.42</td>
<td>120</td>
<td>A</td>
</tr>
</tbody>
</table>

Medias con una letra común no son significativamente diferentes (p > 0.05)

<table>
<thead>
<tr>
<th>Sustratos</th>
<th>Medias</th>
<th>n</th>
<th>Duncan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guano de Isl: 8.22</td>
<td>90</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Bocashi</td>
<td>5.59</td>
<td>90</td>
<td>B</td>
</tr>
<tr>
<td>Humus</td>
<td>4.34</td>
<td>90</td>
<td>C</td>
</tr>
<tr>
<td>Vacuno</td>
<td>3.76</td>
<td>90</td>
<td>D</td>
</tr>
</tbody>
</table>

Medias con una letra común no son significativamente diferentes (p > 0.05)

<table>
<thead>
<tr>
<th>Tarwi</th>
<th>Sustratos</th>
<th>Medias</th>
<th>n</th>
<th>Duncan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yunguyo</td>
<td>Guano de Isl: 8.85</td>
<td>30</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>SCG25</td>
<td>Guano de Isl: 8.63</td>
<td>30</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>SLP</td>
<td>Guano de Isl: 7.17</td>
<td>30</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>Yunguyo</td>
<td>Bocashi</td>
<td>6.79</td>
<td>30</td>
<td>B</td>
</tr>
<tr>
<td>SLP</td>
<td>Humus</td>
<td>5.74</td>
<td>30</td>
<td>C</td>
</tr>
<tr>
<td>SLP</td>
<td>Bocashi</td>
<td>5.01</td>
<td>30</td>
<td>D</td>
</tr>
<tr>
<td>SCG25</td>
<td>Bocashi</td>
<td>4.99</td>
<td>30</td>
<td>D</td>
</tr>
<tr>
<td>SCG25</td>
<td>Humus</td>
<td>4.47</td>
<td>30</td>
<td>DE</td>
</tr>
<tr>
<td>SLP</td>
<td>Vacuno</td>
<td>3.9</td>
<td>30</td>
<td>EF</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>Vacuno</td>
<td>3.81</td>
<td>30</td>
<td>EF</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>Humus</td>
<td>2.82</td>
<td>30</td>
<td>G</td>
</tr>
</tbody>
</table>

Medias con una letra común no son significativamente diferentes (p > 0.05)
Tabla 52: Anova y test de Duncan del rendimiento de grano seco en gramos por parcela.

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>R²</th>
<th>R² Aj</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rdtog/par</td>
<td>36</td>
<td>0.78</td>
<td>0.66</td>
<td>21.58</td>
</tr>
</tbody>
</table>

Cuadro de Análisis de la Varianza (SC tipo III)

<table>
<thead>
<tr>
<th>F.V.</th>
<th>SC</th>
<th>gl</th>
<th>CM</th>
<th>F</th>
<th>p-valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo</td>
<td>154217.24</td>
<td>13</td>
<td>118647.48</td>
<td>6.16</td>
<td>0.0001</td>
</tr>
<tr>
<td>Bloque</td>
<td>1926.12</td>
<td>2</td>
<td>963.06</td>
<td>0.05</td>
<td>0.9513</td>
</tr>
<tr>
<td>Tarwi</td>
<td>723593.54</td>
<td>2</td>
<td>361796.77</td>
<td>18.79</td>
<td><0.0001</td>
</tr>
<tr>
<td>Sustratos</td>
<td>244758.83</td>
<td>3</td>
<td>81586.28</td>
<td>4.24</td>
<td>0.0166</td>
</tr>
<tr>
<td>Tarwi*Sustratos</td>
<td>572138.75</td>
<td>6</td>
<td>95356.46</td>
<td>4.95</td>
<td>0.0024</td>
</tr>
<tr>
<td>Error</td>
<td>423596.45</td>
<td>22</td>
<td>19254.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1966013.69</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tarwi Medias n Duncan

SCG25	835.48	12	A
Yunguyo	596.02	12	B
SLP	497.93	12	B

Medias con una letra común no son significativamente diferentes (p > 0.05)

Sustratos Medias n Duncan

Guano de isl: 754.65	9	A	
Bocashi	686.14	9	AB
Humus	587.99	9	B
Vacuno	543.79	9	B

Medias con una letra común no son significativamente diferentes (p > 0.05)

Tarwi Sustratos Medias n Duncan

SCG25	Guano de isl: 1036.23	3	A	
SCG25	Bocashi	950.43	3	AB
SCG25	Humus	897.78	3	ABC
Yunguyo	Vacuno	703.95	3	BCD
SLP	Guano de isl: 671.58	3	CD	
Yunguyo	Bocashi	613.86	3	DE
Yunguyo	Guano de isl: 556.14	3	DE	
Yunguyo	Humus	510.12	3	DE
SLP	Bocashi	494.13	3	DE
SLP	Vacuno	469.95	3	DE
SCG25	Vacuno	457.47	3	DE
SLP	Humus	356.07	3	E

Medias con una letra común no son significativamente diferentes (p > 0.05)
Tabla 53: Anova y test de Duncan del rendimiento de grano seco en kg/ha

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>R^2</th>
<th>R^2 Aj</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>RdtoKg/ha</td>
<td>36</td>
<td>0.71</td>
<td>0.54</td>
<td>25.45</td>
</tr>
</tbody>
</table>

Cuadro de Análisis de la Varianza (SC tipo III)

<table>
<thead>
<tr>
<th>F.V.</th>
<th>SC</th>
<th>gl</th>
<th>CM</th>
<th>F</th>
<th>p-valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo.</td>
<td>2122987.28</td>
<td>13</td>
<td>163306.71</td>
<td>4.18</td>
<td>0.0016</td>
</tr>
<tr>
<td>Bloque</td>
<td>47010.16</td>
<td>2</td>
<td>23505.08</td>
<td>0.6</td>
<td>0.5564</td>
</tr>
<tr>
<td>Tarwi</td>
<td>705332.04</td>
<td>2</td>
<td>352666.02</td>
<td>9.04</td>
<td>0.0014</td>
</tr>
<tr>
<td>Sustratos</td>
<td>603649.84</td>
<td>3</td>
<td>201216.61</td>
<td>5.16</td>
<td>0.0075</td>
</tr>
<tr>
<td>Tarwi*Sustratos</td>
<td>766995.24</td>
<td>6</td>
<td>127832.54</td>
<td>3.28</td>
<td>0.0186</td>
</tr>
<tr>
<td>Error</td>
<td>858610.1</td>
<td>22</td>
<td>39027.73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>2981597.39</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Medias

<table>
<thead>
<tr>
<th>Tarwi</th>
<th>Medias</th>
<th>n</th>
<th>Duncan</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCG25</td>
<td>961.01</td>
<td>12</td>
<td>A</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>745.02</td>
<td>12</td>
<td>B</td>
</tr>
<tr>
<td>SLP</td>
<td>622.42</td>
<td>12</td>
<td>B</td>
</tr>
</tbody>
</table>

Medias con una letra común no son significativamente diferentes (p > 0.05)

Medias

<table>
<thead>
<tr>
<th>Sustratos</th>
<th>Medias</th>
<th>n</th>
<th>Duncan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guano de isla</td>
<td>943.31</td>
<td>9</td>
<td>A</td>
</tr>
<tr>
<td>Bocashi</td>
<td>857.67</td>
<td>9</td>
<td>AB</td>
</tr>
<tr>
<td>Vacuno</td>
<td>679.74</td>
<td>9</td>
<td>BC</td>
</tr>
<tr>
<td>Humus</td>
<td>623.88</td>
<td>9</td>
<td>C</td>
</tr>
</tbody>
</table>

Medias con una letra común no son significativamente diferentes (p > 0.05)

Medias

<table>
<thead>
<tr>
<th>Tarwi</th>
<th>Sustratos</th>
<th>Medias</th>
<th>n</th>
<th>Duncan</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCG25</td>
<td>Suano de isla</td>
<td>1295.29</td>
<td>3</td>
<td>A</td>
</tr>
<tr>
<td>SCG25</td>
<td>Bocashi</td>
<td>1188.04</td>
<td>3</td>
<td>AB</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>Vacuno</td>
<td>879.94</td>
<td>3</td>
<td>BC</td>
</tr>
<tr>
<td>SLP</td>
<td>Suano de isla</td>
<td>839.48</td>
<td>3</td>
<td>BC</td>
</tr>
<tr>
<td>SCG25</td>
<td>Humus</td>
<td>788.89</td>
<td>3</td>
<td>CD</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>Bocashi</td>
<td>767.33</td>
<td>3</td>
<td>CD</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>Suano de isla</td>
<td>695.18</td>
<td>3</td>
<td>CD</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>Humus</td>
<td>637.65</td>
<td>3</td>
<td>CD</td>
</tr>
<tr>
<td>SLP</td>
<td>Bocashi</td>
<td>617.66</td>
<td>3</td>
<td>CD</td>
</tr>
<tr>
<td>SLP</td>
<td>Vacuno</td>
<td>587.44</td>
<td>3</td>
<td>CD</td>
</tr>
<tr>
<td>SCG25</td>
<td>Vacuno</td>
<td>571.84</td>
<td>3</td>
<td>CD</td>
</tr>
<tr>
<td>SLP</td>
<td>Humus</td>
<td>445.09</td>
<td>3</td>
<td>D</td>
</tr>
</tbody>
</table>

Medias con una letra común no son significativamente diferentes (p > 0.05)
<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>R²</th>
<th>R² Aj</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>PESO FINAL</td>
<td>36</td>
<td>0.4</td>
<td>0.04</td>
<td>2.74</td>
</tr>
</tbody>
</table>

Cuadro de Análisis de la Varianza (SC tipo III)

<table>
<thead>
<tr>
<th>F.V.</th>
<th>SC</th>
<th>gl</th>
<th>CM</th>
<th>F</th>
<th>p-valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo.</td>
<td>0.98</td>
<td>13</td>
<td>0.08</td>
<td>1.11</td>
<td>0.4041</td>
</tr>
<tr>
<td>Bloque</td>
<td>0.12</td>
<td>2</td>
<td>0.06</td>
<td>0.88</td>
<td>0.4287</td>
</tr>
<tr>
<td>Tarwi</td>
<td>0.1</td>
<td>2</td>
<td>0.05</td>
<td>0.7</td>
<td>0.5083</td>
</tr>
<tr>
<td>Sustratos</td>
<td>0.25</td>
<td>3</td>
<td>0.08</td>
<td>1.21</td>
<td>0.3312</td>
</tr>
<tr>
<td>Tarwi*Sustra</td>
<td>0.52</td>
<td>6</td>
<td>0.09</td>
<td>1.27</td>
<td>0.3129</td>
</tr>
<tr>
<td>Error</td>
<td>1.51</td>
<td>22</td>
<td>0.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>2.49</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tarwi Medias

<table>
<thead>
<tr>
<th>Medias</th>
<th>n</th>
<th>Duncan</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCG25</td>
<td>12</td>
<td>A</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>12</td>
<td>A</td>
</tr>
<tr>
<td>SLP</td>
<td>12</td>
<td>A</td>
</tr>
</tbody>
</table>

Medias con una letra común no son significativamente diferentes (p > 0.05)

Sustratos Medias

<table>
<thead>
<tr>
<th>Medias</th>
<th>n</th>
<th>Duncan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humus</td>
<td>9</td>
<td>A</td>
</tr>
<tr>
<td>Guano de isla</td>
<td>9</td>
<td>A</td>
</tr>
<tr>
<td>Bocashi</td>
<td>9</td>
<td>A</td>
</tr>
<tr>
<td>Vacuno</td>
<td>9</td>
<td>A</td>
</tr>
</tbody>
</table>

Medias con una letra común no son significativamente diferentes (p > 0.05)

Tarwi Sustratos Medias

<table>
<thead>
<tr>
<th>Sustratos</th>
<th>Medias</th>
<th>n</th>
<th>Duncan</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCG25 Humus</td>
<td>9.87</td>
<td>3</td>
<td>A</td>
</tr>
<tr>
<td>SLP Humus</td>
<td>9.73</td>
<td>3</td>
<td>AB</td>
</tr>
<tr>
<td>Yunguyo Vacun</td>
<td>9.73</td>
<td>3</td>
<td>AB</td>
</tr>
<tr>
<td>SLP Guano de isla</td>
<td>9.6</td>
<td>3</td>
<td>AB</td>
</tr>
<tr>
<td>Yunguyo Bocashi</td>
<td>9.57</td>
<td>3</td>
<td>AB</td>
</tr>
<tr>
<td>Yunguyo Guano de isla</td>
<td>9.53</td>
<td>3</td>
<td>AB</td>
</tr>
<tr>
<td>SCG25 Bocashi</td>
<td>9.47</td>
<td>3</td>
<td>AB</td>
</tr>
<tr>
<td>Yunguyo Humus</td>
<td>9.47</td>
<td>3</td>
<td>AB</td>
</tr>
<tr>
<td>SCG25 Vacun</td>
<td>9.43</td>
<td>3</td>
<td>AB</td>
</tr>
<tr>
<td>SLP Bocashi</td>
<td>9.43</td>
<td>3</td>
<td>AB</td>
</tr>
<tr>
<td>SLP Guano de isla</td>
<td>9.43</td>
<td>3</td>
<td>AB</td>
</tr>
<tr>
<td>SLP Vacun</td>
<td>9.3</td>
<td>3</td>
<td>B</td>
</tr>
</tbody>
</table>

Medias con una letra común no son significativamente diferentes (p > 0.05)
Tabla 55: Anova y test de Duncan del % de humedad.

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>R^2</th>
<th>R^2 Aj</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>%Humedad</td>
<td>36</td>
<td>0.59</td>
<td>0.35</td>
<td>11.1</td>
</tr>
</tbody>
</table>

Cuadro de Análisis de la Varianza (SC tipo III)

<table>
<thead>
<tr>
<th>F.V.</th>
<th>SC</th>
<th>gl</th>
<th>CM</th>
<th>F</th>
<th>p-valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo</td>
<td>0.31</td>
<td>13</td>
<td>0.02</td>
<td>2.47</td>
<td>0.0299</td>
</tr>
<tr>
<td>Bloque</td>
<td>0.01</td>
<td>2</td>
<td>0.01</td>
<td>0.72</td>
<td>0.4988</td>
</tr>
<tr>
<td>Tarwi</td>
<td>2.20E-03</td>
<td>2</td>
<td>1.10E-03</td>
<td>0.11</td>
<td>0.892</td>
</tr>
<tr>
<td>Sustratos</td>
<td>0.02</td>
<td>3</td>
<td>0.01</td>
<td>0.72</td>
<td>0.5518</td>
</tr>
<tr>
<td>Tarwi*Sustra</td>
<td>0.27</td>
<td>6</td>
<td>0.05</td>
<td>4.71</td>
<td>0.0032</td>
</tr>
<tr>
<td>Error</td>
<td>0.21</td>
<td>22</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.52</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tarwi Medias n Duncan

<table>
<thead>
<tr>
<th>Sustratos</th>
<th>Medias</th>
<th>n</th>
<th>Duncan</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLP</td>
<td>0.89</td>
<td>12</td>
<td>A</td>
</tr>
<tr>
<td>SCG25</td>
<td>0.89</td>
<td>12</td>
<td>A</td>
</tr>
<tr>
<td>Yunguyo</td>
<td>0.88</td>
<td>12</td>
<td>A</td>
</tr>
</tbody>
</table>
| Medias con una letra común no son significativamente diferentes (p > 0.05)

Sustratos Medias n Duncan

<table>
<thead>
<tr>
<th>Sustratos</th>
<th>Medias</th>
<th>n</th>
<th>Duncan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bocashi</td>
<td>0.92</td>
<td>9</td>
<td>A</td>
</tr>
<tr>
<td>Vacuno</td>
<td>0.89</td>
<td>9</td>
<td>A</td>
</tr>
<tr>
<td>Guano de isl</td>
<td>0.88</td>
<td>9</td>
<td>A</td>
</tr>
<tr>
<td>Humus</td>
<td>0.86</td>
<td>9</td>
<td>A</td>
</tr>
</tbody>
</table>
| Medias con una letra común no son significativamente diferentes (p > 0.05)

Tarwi Sustratos Medias n Duncan

SCG25	Bocashi	1.07	3	A
SLP	Vacuno	1	3	AB
SLP	Guano de isl	0.93	3	ABC
Yunguyo	Humus	0.93	3	ABC
Yunguyo	Vacuno	0.9	3	ABCD
SCG25	Humus	0.9	3	ABCD
SLP	Bocashi	0.9	3	ABCD
Yunguyo	Guano de isl	0.87	3	BCD
SCG25	Guano de isl	0.83	3	BCD
Yunguyo	Bocashi	0.8	3	CD
SCG25	Vacuno	0.77	3	CD
SLP	Humus	0.73	3	D
Medias con una letra común no son significativamente diferentes (p > 0.05)				
ANEXO 7: Costos de producción para una hectárea de tarwi cultivar SCG-25*GI

<table>
<thead>
<tr>
<th>ACTIVIDADES</th>
<th>UNIDAD</th>
<th>CANTIDAD</th>
<th>COSTO UNITARIO</th>
<th>COSTO TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. COSTOS DIRECTOS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PREPARACIÓN DEL TERRENO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1 Limpieza de rastrojos</td>
<td>Jornal</td>
<td>4</td>
<td>40</td>
<td>160</td>
</tr>
<tr>
<td>1.2 Riego de machaco</td>
<td>Jornal</td>
<td>1</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>1.3 Aradura y surqueo</td>
<td>Yunta</td>
<td>4</td>
<td>100</td>
<td>400</td>
</tr>
<tr>
<td>SUBTOTAL</td>
<td></td>
<td></td>
<td></td>
<td>600</td>
</tr>
<tr>
<td>TRANSPLANTE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1 Semilla</td>
<td>Kg</td>
<td>60</td>
<td>3</td>
<td>180</td>
</tr>
<tr>
<td>2.2 Siembra</td>
<td>Jornal</td>
<td>4</td>
<td>40</td>
<td>160</td>
</tr>
<tr>
<td>SUBTOTAL</td>
<td></td>
<td></td>
<td></td>
<td>340</td>
</tr>
<tr>
<td>ABONAMIENTO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1 Trat. en estudio</td>
<td>G. I.</td>
<td>F. M.</td>
<td>G. I.</td>
<td>F. M.</td>
</tr>
<tr>
<td>SCG25-G.Isla.</td>
<td>Kg/ha</td>
<td>1250</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Y-G.Isla.</td>
<td>Kg/ha</td>
<td>1250</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>SLP4-G.Isla.</td>
<td>Kg/ha</td>
<td>1250</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>H. L.</td>
<td>F. M.</td>
<td>G. I.</td>
<td>F. M.</td>
<td>G. I.</td>
</tr>
<tr>
<td>SCG25-H.Lombriz.</td>
<td>Kg/ha</td>
<td>6000</td>
<td>4</td>
<td>0.4</td>
</tr>
<tr>
<td>Y-H. Lombriz.</td>
<td>Kg/ha</td>
<td>6000</td>
<td>4</td>
<td>0.4</td>
</tr>
<tr>
<td>SLP4-H.Lombriz.</td>
<td>Kg/ha</td>
<td>6000</td>
<td>4</td>
<td>0.4</td>
</tr>
<tr>
<td>B. F. M.</td>
<td>B. F. M.</td>
<td>B. F. M.</td>
<td>F. M.</td>
<td></td>
</tr>
<tr>
<td>SCG25-Bocashi.</td>
<td>Kg/ha</td>
<td>12000</td>
<td>4</td>
<td>0.2</td>
</tr>
<tr>
<td>Y-Bocashi.</td>
<td>Kg/ha</td>
<td>12000</td>
<td>4</td>
<td>0.2</td>
</tr>
<tr>
<td>SLP4-Bocashi.</td>
<td>Kg/ha</td>
<td>12000</td>
<td>4</td>
<td>0.2</td>
</tr>
<tr>
<td>SUBTOTAL</td>
<td>F. M.</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>LABORES CULTURALES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1 Aplicación de abonos</td>
<td>Jornal</td>
<td>4</td>
<td>40</td>
<td>160</td>
</tr>
<tr>
<td>4.2 Deshierbas</td>
<td>Jornal</td>
<td>5</td>
<td>40</td>
<td>200</td>
</tr>
<tr>
<td>4.3 Aporque</td>
<td>Jornal</td>
<td>5</td>
<td>40</td>
<td>200</td>
</tr>
<tr>
<td>4.4 Riego</td>
<td>Jornal</td>
<td>19</td>
<td>40</td>
<td>760</td>
</tr>
<tr>
<td>4.5 Cosecha</td>
<td>Jornal</td>
<td>5</td>
<td>40</td>
<td>200</td>
</tr>
<tr>
<td>SUBTOTAL</td>
<td></td>
<td></td>
<td></td>
<td>1520</td>
</tr>
<tr>
<td>PROTECCIÓN VEGETAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1 Homai</td>
<td>Kg</td>
<td>1</td>
<td>90</td>
<td>9.0</td>
</tr>
<tr>
<td>5.2 Versus</td>
<td>100 g</td>
<td>1</td>
<td>42</td>
<td>4.2</td>
</tr>
<tr>
<td>5.3 Benopoint 50 PM</td>
<td>200 g</td>
<td>1</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>5.4 Adherente</td>
<td>L</td>
<td>0.5</td>
<td>40</td>
<td>20</td>
</tr>
<tr>
<td>5.5 Luxazim</td>
<td>L</td>
<td>1</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>5.6 Root Plex</td>
<td>L</td>
<td>1</td>
<td>42</td>
<td>42</td>
</tr>
<tr>
<td>5.7 Pantera 80 WP</td>
<td>Kg</td>
<td>0.2</td>
<td>35</td>
<td>5.7</td>
</tr>
<tr>
<td>SUBTOTAL</td>
<td></td>
<td></td>
<td></td>
<td>150.9</td>
</tr>
<tr>
<td>AGUA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.1 Canon de agua</td>
<td>Mes</td>
<td>7</td>
<td>20</td>
<td>140</td>
</tr>
<tr>
<td>SUBTOTAL</td>
<td></td>
<td></td>
<td></td>
<td>140</td>
</tr>
<tr>
<td>TOTAL COSTOS DIRECTOS</td>
<td></td>
<td></td>
<td></td>
<td>4225.9</td>
</tr>
<tr>
<td>B. COSTOS INDIRECTOS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leyes sociales</td>
<td>22%</td>
<td></td>
<td></td>
<td>929.7</td>
</tr>
<tr>
<td>Imprevistos</td>
<td>5%</td>
<td></td>
<td></td>
<td>211.3</td>
</tr>
<tr>
<td>Gastos financieros</td>
<td>8%</td>
<td></td>
<td></td>
<td>338.1</td>
</tr>
<tr>
<td>Gastos administrativos</td>
<td>5%</td>
<td></td>
<td></td>
<td>211.3</td>
</tr>
<tr>
<td>TOTAL COSTOS INDIRECTOS</td>
<td></td>
<td></td>
<td></td>
<td>1692.4</td>
</tr>
<tr>
<td>COSTO TOTAL POR HECTAREA (Nuevos soles)</td>
<td></td>
<td></td>
<td></td>
<td>5916.3</td>
</tr>
</tbody>
</table>
ANEXO 8: TOMAS FOTOGRÁFICAS

Foto 16. Preparación del terreno, surcos

Foto 17. Identificación de bloques, parcelas

Foto 18. Emergencia a 13 días
Foto 19. Preparación de bocashi (izq) y aplicación bocashi (der)

Foto 20. Inicio de floración

Foto 21. Cosecha